Hidden states and currents in biological systems
This project aims to revolutionize the understanding of hidden dynamics in various systems by developing new statistical methods for analyzing time series data, enhancing insights in biophysics and beyond.
Projectdetails
Introduction
The ability to infer information about hidden degrees of freedom from time series would revolutionize experiments on single molecules, mesoscale assemblies, and tissues, as well as financial and climate systems. Hidden dynamics are often essential, as they reflect the approaching of a critical transition or describe its mechanism, e.g. the folding of a protein or RNA, or an abrupt shift in climate.
Project Goals
With the project proposed here, I plan to push our quantitative understanding of experiments, ranging from single-molecule spectroscopy to observations of migrating cells and developing tissues, to a new level. This will be achieved by exploiting how the properties of a high-dimensional landscape and current imprint onto the time ordering of projected states along individual trajectories.
Methodology
I will introduce functionals of projected paths that are easily inferred from data, and analyze their statistics and measure concentration by combining the following:
- The theory of functionals of stochastic paths
- Concentration inequalities
- Semiclassical analysis
These methods will be applied to:
- Single-molecule force spectroscopy
- Plasmon ruler experiments
- Cell tracking
- Molecular Dynamics simulations
Distinctive Characteristics
A distinctive characteristic of the project is the focus on non-asymptotic measure concentration, i.e. on “occurs with high probability” results that will be addressed for the first time in the context of non-equilibrium physics.
Expected Outcomes
Providing a new framework for interpreting experiments—using the information readily encoded in the data but inaccessible to existing approaches—the project will generate new knowledge that will:
- Resolve the long-standing debate about intermediates in DNA, RNA, and protein folding
- Address controversies about non-converging dynamics of folded proteins
- Shed new light on the operation of nanomachines and self-assembly far from equilibrium
- Enhance understanding of cell movements during tissue regeneration
Impact
This project will lead to a paradigm shift in soft matter and biophysics and may reshape actuarial and climate science.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.000.000 |
Totale projectbegroting | € 2.000.000 |
Tijdlijn
Startdatum | 1-5-2023 |
Einddatum | 30-4-2028 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EVpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Decoding the Multi-facets of Cellular Identity from Single-cell DataDevelop computational methods combining machine learning and dynamical systems to analyze single-cell data, uncovering cellular identities and interactions to enhance understanding of multicellular systems in health and disease. | ERC STG | € 1.484.125 | 2022 | Details |
Nanoprobes for Nonequilibrium Driven SystemsThis project aims to develop fluorescent nanosensors to quantify energy dissipation in nonequilibrium biological systems, enhancing understanding of molecular motors and thermodynamic constraints. | ERC STG | € 1.500.000 | 2022 | Details |
Stochastic dynamics of sINgle cells: Growth, Emergence and ResistanceThis project develops stochastic and deterministic models to analyze small population dynamics in biology and medicine, aiming to inform new therapeutic strategies for conditions like leukemia and antibiotic resistance. | ERC ADG | € 2.284.998 | 2022 | Details |
A holistic approach to bridge the gap between microsecond computer simulations and millisecond biological eventsThis project aims to bridge μs computer simulations and ms biological processes by developing methods to analyze conformational transitions in V1Vo–ATPase, enhancing understanding of ATP-driven mechanisms. | ERC ADG | € 2.134.529 | 2023 | Details |
Decoding the Multi-facets of Cellular Identity from Single-cell Data
Develop computational methods combining machine learning and dynamical systems to analyze single-cell data, uncovering cellular identities and interactions to enhance understanding of multicellular systems in health and disease.
Nanoprobes for Nonequilibrium Driven Systems
This project aims to develop fluorescent nanosensors to quantify energy dissipation in nonequilibrium biological systems, enhancing understanding of molecular motors and thermodynamic constraints.
Stochastic dynamics of sINgle cells: Growth, Emergence and Resistance
This project develops stochastic and deterministic models to analyze small population dynamics in biology and medicine, aiming to inform new therapeutic strategies for conditions like leukemia and antibiotic resistance.
A holistic approach to bridge the gap between microsecond computer simulations and millisecond biological events
This project aims to bridge μs computer simulations and ms biological processes by developing methods to analyze conformational transitions in V1Vo–ATPase, enhancing understanding of ATP-driven mechanisms.