Extreme Particle Acceleration in Shocks: from the laboratory to astrophysics
The XPACE project aims to investigate the microphysics of non-relativistic and relativistic astrophysical shocks through simulations and laboratory experiments to enhance understanding of particle acceleration and cosmic rays.
Projectdetails
Introduction
Astrophysical shocks are among the most powerful particle accelerators in the Universe. Generated by violent interactions of supersonic, and often relativistic, plasma flows with the ambient medium, shock waves involve a complex and highly nonlinear interplay between the dynamics of flows, magnetic fields, and accelerated particles through mechanisms not yet fully understood.
Research Questions
Several long-standing scientific questions arise from this field, including:
- What is the origin of cosmic rays?
- What controls particle injection and the acceleration efficiency in collisionless shocks?
- How is the physics of relativistic shocks modified by electron-positron pair production?
- Can these mechanisms be studied in the laboratory?
These questions are closely tied to extreme plasma physics processes, where the interplay between micro-instabilities and global dynamics is critical.
Technological Advances
Advances in high-power lasers and particle beams are just now opening unique opportunities to probe the microphysics of shocks and particle acceleration in controlled laboratory experiments for the first time. Together with the fast-paced developments in fully-kinetic plasma simulations, computational power, and astronomical observations, the time is ripe to deploy a research program focused on particle acceleration in shocks that can transform our ability to address these questions.
Project Goals
In the ERC grant XPACE, we aim to:
- Use first-principles massively parallel simulations and laboratory experiments to study the microphysics of non-relativistic and relativistic shocks.
- Employ data-driven techniques to develop multi-scale models that bridge the gap between microphysics and global dynamics.
This project will build comprehensive models of the plasma processes that shape magnetic field amplification, particle acceleration, and radiation emission in shocks, with the goal of solving central questions in extreme plasma phenomena. It will also open new avenues between theory, computation, laboratory experiments, and astrophysical observations.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.799.990 |
Totale projectbegroting | € 1.799.990 |
Tijdlijn
Startdatum | 1-6-2023 |
Einddatum | 31-5-2028 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- IST-ID ASSOCIACAO DO INSTITUTO SUPERIOR TECNICO PARA A INVESTIGACAO E O DESENVOLVIMENTOpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
THz Wave Accelerating Cavity for ultrafast scienceThe project aims to develop a compact, high-energy particle accelerator that enhances electron beam properties for medical and industrial applications while reducing cost and environmental impact. | EIC Pathfinder | € 3.198.152 | 2022 | Details |
Experimental signatures of quantum electrodynamics in the strong field regimeThe EXAFIELD project aims to explore non-perturbative strong-field quantum electrodynamics by using Doppler-boosted laser pulses to collide with ultrashort electron bunches, revealing new physics. | ERC STG | € 1.685.085 | 2023 | Details |
Staging of Plasma Accelerators for Realizing Timely ApplicationsSPARTA aims to advance plasma acceleration technology to enable high-energy electron beams for groundbreaking physics experiments and affordable applications in society, addressing current collider challenges. | ERC STG | € 1.499.368 | 2024 | Details |
Illuminating neutron stars with radiative plasma physicsThis project aims to develop first-principles 3D models and a simulation toolkit for neutron star radiative plasmas to enhance understanding of their emission mechanisms and improve astrophysical theories. | ERC STG | € 2.211.196 | 2024 | Details |
THz Wave Accelerating Cavity for ultrafast science
The project aims to develop a compact, high-energy particle accelerator that enhances electron beam properties for medical and industrial applications while reducing cost and environmental impact.
Experimental signatures of quantum electrodynamics in the strong field regime
The EXAFIELD project aims to explore non-perturbative strong-field quantum electrodynamics by using Doppler-boosted laser pulses to collide with ultrashort electron bunches, revealing new physics.
Staging of Plasma Accelerators for Realizing Timely Applications
SPARTA aims to advance plasma acceleration technology to enable high-energy electron beams for groundbreaking physics experiments and affordable applications in society, addressing current collider challenges.
Illuminating neutron stars with radiative plasma physics
This project aims to develop first-principles 3D models and a simulation toolkit for neutron star radiative plasmas to enhance understanding of their emission mechanisms and improve astrophysical theories.