Enabling personalised diagnosis, treatment, and stratification through whole-body metabolic modelling of an individual’s genome, metabolome, and metagenome.
AVATAR aims to develop a mechanistic computational modeling framework to link genetic variants, metabolism, and environmental factors for personalized medicine in diagnosing and treating metabolic diseases.
Projectdetails
Introduction
The increasing availability of whole-genome sequences will ultimately transform medicine into personalized medicine. To realize this potential, we need to understand which of the millions of genetic variants in a person's genome can alter a phenotype.
Genome-wide Association Studies
Genome-wide association studies (GWAS) have associated many genetic variants with thousands of phenotypic traits. Metabolomics has further informed GWAS. However, these methods do generally not consider the biochemical network connecting genetic variants with the metabolic phenotype.
Extrinsic Factors
Additionally, extrinsic factors, such as diet and the microbiome, also modulate the metabolic phenotype. A computational systems approach is required to untangle this complex interplay.
Project Overview
In AVATAR, I shall develop and apply a novel mechanistic computational modeling framework that will significantly expand cutting-edge computational models of whole-body metabolism.
In Silico Models
The novel in silico models will mechanistically describe the network of genetic variants, genes, proteins, and biochemical reactions, as well as underlying physiological processes that are influenced by microbial and nutrient metabolism.
Algorithm Development
I shall devise a novel algorithm to predict phenotypically relevant genetic variants based on a person's genome and metabolome.
Biomedical Applications
The validated algorithm and the modeling framework shall then be used for two distinct biomedical proof-of-concept studies:
- The diagnosis and diet-based treatment of inherited metabolic diseases.
- The metabolic pathway-based stratification of individuals with cognitive impairment.
Conclusion
AVATAR will enable novel insights into the genotype-phenotype-environment relationship by enabling systematic mechanism-based analyses of genetic variants, diet, and the microbiome. This ground-breaking, innovative, multidisciplinary project will influence precision medicine by providing a personalizable modeling analysis framework that may ultimately provide a foundation for computer-guided diagnosis and treatment strategies.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.999.991 |
Totale projectbegroting | € 1.999.991 |
Tijdlijn
Startdatum | 1-4-2024 |
Einddatum | 31-3-2029 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- UNIVERSITY OF GALWAYpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Elucidating and targeting the mechanisms encoded in the genome of long-lived individuals to improve healthy ageingThis project aims to identify and validate rare genetic variants linked to longevity using CRISPR/Cas9 and high-throughput screening to promote healthy aging and extend lifespan. | ERC STG | € 1.500.000 | 2022 | Details |
Gut microbiota drug biotransformation as a tool to unravel the mechanisms of metabolic microbiota-host interactionsThis project aims to systematically study metabolic interactions between gut microbiota and hosts using drug biotransformation to improve understanding of microbiome-related health variations and drug responses. | ERC STG | € 1.894.858 | 2023 | Details |
Proteome-wide Functional Interrogation and Modulation of Gut Microbiome SpeciesThis project aims to identify and manipulate gut microbiome protein functions using high-throughput proteomics to develop targeted therapies for restoring microbial health. | ERC STG | € 1.499.980 | 2023 | Details |
Personalised Mechanobiological Models to Predict Tumour Growth and Anti-Cancer Drug PenetrationThis project aims to develop a personalized cancer treatment framework by modeling stress-dependent tumor growth and drug penetration to enhance patient-specific therapy outcomes. | ERC STG | € 1.499.693 | 2024 | Details |
Elucidating and targeting the mechanisms encoded in the genome of long-lived individuals to improve healthy ageing
This project aims to identify and validate rare genetic variants linked to longevity using CRISPR/Cas9 and high-throughput screening to promote healthy aging and extend lifespan.
Gut microbiota drug biotransformation as a tool to unravel the mechanisms of metabolic microbiota-host interactions
This project aims to systematically study metabolic interactions between gut microbiota and hosts using drug biotransformation to improve understanding of microbiome-related health variations and drug responses.
Proteome-wide Functional Interrogation and Modulation of Gut Microbiome Species
This project aims to identify and manipulate gut microbiome protein functions using high-throughput proteomics to develop targeted therapies for restoring microbial health.
Personalised Mechanobiological Models to Predict Tumour Growth and Anti-Cancer Drug Penetration
This project aims to develop a personalized cancer treatment framework by modeling stress-dependent tumor growth and drug penetration to enhance patient-specific therapy outcomes.