Enabling Noble Metal Reactivity with Earth-Abundant Metals for Selective Bond Functionalization Strategies
This project aims to develop iron-based catalysts for key organic reactions by unlocking two-electron chemistry, replacing precious metals to enhance sustainability in chemical synthesis.
Projectdetails
Introduction
The functionalization of C=C and C–X bonds (X = I, Cl, Br, and H) is fundamental in organic chemistry for making carbon-carbon bonds or for introducing molecular complexity. Chemists have traditionally relied on precious metal catalysts such as palladium, platinum, and iridium to facilitate these transformations.
Challenges with Precious Metals
Some of these metals, if not all of them, are among the rarest on earth, leading to increasingly high prices and uncertainty in future supply chains. As their availability continues to decline, it is important to address the scarcity of these metals to secure a sustainable future.
Alternative Solutions
One solution is to develop new technologies that allow one to substitute the precious metal catalysts for those that are abundantly available (e.g., iron), without sacrificing performance and selectivity.
The Iron Challenge
Because of the fundamental differences between the properties of iron (one-electron chemistry) and the second/third-row transition metals (two-electron chemistry), this approach has shown to be a daunting task. If, however, it could be shown that iron could reliably engage in two-electron chemistry, then the reactivity of precious metals could be unlocked for iron.
Research Objectives
Through bespoke ligand design, we will attempt to unlock this two-electron chemistry and apply it to three of the most common reactions in organic synthesis:
- Cross-coupling
- Alkene metathesis
- C–H bond functionalization
Expected Outcomes
By relying on a distinct two-electron mechanism, a treasure trove of possibilities for selective bond-forming reactions is generated. Overall, this work is expected to result in new avenues in earth-abundant metal catalysis and provide new methodologies to construct ever-important C-C and C-N bonds that can be used to induce molecular complexity.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.996.250 |
Totale projectbegroting | € 1.996.250 |
Tijdlijn
Startdatum | 1-6-2023 |
Einddatum | 31-5-2028 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- TECHNION - ISRAEL INSTITUTE OF TECHNOLOGYpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Multifunctional Ligands for Enhanced CatalysisThis project aims to develop a sustainable method for selective C-H functionalization using earth-abundant metals and multifunctional ligands, enhancing efficiency and expanding industrial applications. | ERC STG | € 1.583.643 | 2022 | Details |
Exciting Iron Catalysis: A route towards sustainable cross-couplings Enabled by LightThis project aims to develop a novel iron-catalyzed cross-coupling method using visible light to enhance reactivity and sustainability in organic synthesis, reducing reliance on palladium. | ERC STG | € 1.499.995 | 2024 | Details |
Carbon-Hydrogen bond activation via a new charge control approachC-HANCE aims to revolutionize C–H functionalisation by utilizing charge control to enable novel reactions and broaden substrate applicability, enhancing synthetic chemistry and downstream applications. | ERC ADG | € 2.750.000 | 2025 | Details |
Multifunctional Ligands for Enhanced Catalysis
This project aims to develop a sustainable method for selective C-H functionalization using earth-abundant metals and multifunctional ligands, enhancing efficiency and expanding industrial applications.
Exciting Iron Catalysis: A route towards sustainable cross-couplings Enabled by Light
This project aims to develop a novel iron-catalyzed cross-coupling method using visible light to enhance reactivity and sustainability in organic synthesis, reducing reliance on palladium.
Carbon-Hydrogen bond activation via a new charge control approach
C-HANCE aims to revolutionize C–H functionalisation by utilizing charge control to enable novel reactions and broaden substrate applicability, enhancing synthetic chemistry and downstream applications.