Dynamic Magnetosphere Ionosphere Thermosphere coupling

DynaMIT aims to revolutionize our understanding of space-atmosphere coupling in the polar ionosphere by integrating 3D modeling with innovative data assimilation techniques to enhance space weather predictions.

Subsidie
€ 2.000.000
2023

Projectdetails

Introduction

DynaMIT addresses a fundamental misunderstanding of how Earth is coupled to space in the polar ionosphere. Here, the neutral atmosphere collides with charged particles influenced by electromagnetic fields, profoundly impacting the dynamics of the atmosphere and its surroundings.

Current Understanding

Despite being the best instrumented region of space, our understanding of Earth's ionosphere is severely limited. The current paradigm contains two crippling assumptions:

  1. The ionosphere is only 2D.
  2. The ionosphere is in a steady state.

This conceptualization obscures the complex interplay of forces that change the fluids and electromagnetic fields in both regions.

Implications of Misunderstanding

This prevents us from accurately understanding phenomena, such as the aurora polaris, that have been observed and studied from the ground for centuries.

Project Goals

To advance beyond the state of the art, we must transition to a dynamic view of space-atmosphere coupling. This project will apply first principles to model how the neutral atmosphere, plasma, and electromagnetic fields interact.

Methodology

To do this, we will build and combine the DynaMIT model with novel measurements using an innovative data assimilation technique developed in-house. This ground-breaking combination of multi-instrument data with full 3D numerical simulations will create a radical new platform from which we will interrogate fundamental outstanding issues in space physics:

  1. How ionospheric dynamics disturb Earth's magnetic field.
  2. How energy flows between regions, and how it dissipates in the atmosphere.
  3. How space-atmosphere coupling shapes near-Earth space.

Importance of the Research

These questions are critical for understanding how Earth interacts with space, and the influence on technology, climate, and circulation in the lower atmosphere.

Conclusion

If successful, DynaMIT will be a paradigm change that transforms our conceptual understanding of how the atmosphere is coupled with space, provides language to explain ionospheric observations, and paves the way for improvements in space weather predictions.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 2.000.000
Totale projectbegroting€ 2.000.000

Tijdlijn

Startdatum1-10-2023
Einddatum30-9-2028
Subsidiejaar2023

Partners & Locaties

Projectpartners

  • UNIVERSITETET I BERGENpenvoerder

Land(en)

Norway

Vergelijkbare projecten binnen European Research Council

ERC STG

MANUNKIND: Determinants and Dynamics of Collaborative Exploitation

This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.

€ 1.497.749
ERC STG

Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure

The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.

€ 1.498.280
ERC STG

The Ethics of Loneliness and Sociability

This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.

€ 1.025.860
ERC STG

Uncovering the mechanisms of action of an antiviral bacterium

This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.

€ 1.500.000

Vergelijkbare projecten uit andere regelingen

ERC SyG

NEw generation MEthods for numerical SImulationS

The NEMESIS project aims to develop innovative numerical simulators for complex PDE problems in magnetohydrodynamics and geological flows by creating new mathematical tools and an open-source library.

€ 7.818.782
ERC ADG

Open Superior Efficient Solar Atmosphere Model Extension

Develop a high-order GPU-enabled 3D time-evolving multi-fluid model of the solar atmosphere to enhance understanding of solar wind, flares, and CMEs for improved Earth impact predictions.

€ 2.498.230
ERC ADG

Waves for energy in magnetized plasmas

SMARTWAVES aims to develop a novel plasma regime for fusion devices by enhancing wave-particle interaction understanding, improving diagnostics, and bridging fusion, space, and astrophysical research.

€ 2.511.038