Dosimetry of Ultra-High Dose-Rate Electron Beams at Solid-Water Interfaces in Electron Microscopy: A Key Advance in Hydrated Samples Research

This project aims to develop novel instrumentation to study radiolytic chemistry in electron microscopy, enhancing understanding of water-solid interfaces and mitigating electron-beam effects.

Subsidie
€ 2.130.686
2024

Projectdetails

Introduction

Electron microscopy (EM) has played a key role in the discovery of many new materials, as well as the elucidation of the role of defect structures and interfaces on material properties and behaviour. Current electron microscopes are capable of maintaining the relevant hydrated state of samples by means of cryofixation techniques or by using dedicated liquid cells.

Importance of Aqueous Systems

This opens up the possibility of investigating crucial interfaces, such as those in complex aqueous systems that, despite their significance, remain poorly understood. The study of water-solid interfaces in the EM is currently limited by the sensitivity of aqueous samples and interfaces to the action of the electron beam.

Need for Fundamental Knowledge

Knowledge of the fundamental chemical processes induced by interaction with the electron beam is needed for the interpretation of results, prediction and design of experiments, and to potentially mitigate electron-beam effects.

Proposed Development

Here, I propose to develop novel instrumentation and approaches to allow for the direct determination of the yields of radicals and molecules produced, as well as reaction kinetics in the EM and at the interface between materials and aqueous solutions.

Objectives and Methodology

This new concept will permit us to precisely assess the effect of important factors in the radiolysis of aqueous solutions inside the EM, such as:

  1. The very high electron dose rates
  2. The supports
  3. Liquid volume
  4. Temperature
  5. The effect of nanomaterials interfaces

This newly accessible knowledge will lead to the interpretation of numerous EM experiments and will be used to develop novel data-informed adaptive scanning approaches specifically designed for in situ dynamic acquisition with minimal chemical effects in the samples.

Future Goals

An important goal of this project is to conceive new predictive models for the radiolytic chemistry produced during EM experiments, which will open the door to the future design of mitigation procedures for radiolysis damage in EM.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 2.130.686
Totale projectbegroting€ 2.130.686

Tijdlijn

Startdatum1-6-2024
Einddatum31-5-2029
Subsidiejaar2024

Partners & Locaties

Projectpartners

  • CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRSpenvoerder

Land(en)

France

Vergelijkbare projecten binnen European Research Council

ERC STG

MANUNKIND: Determinants and Dynamics of Collaborative Exploitation

This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.

€ 1.497.749
ERC STG

Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure

The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.

€ 1.498.280
ERC STG

Uncovering the mechanisms of action of an antiviral bacterium

This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.

€ 1.500.000
ERC STG

The Ethics of Loneliness and Sociability

This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.

€ 1.025.860

Vergelijkbare projecten uit andere regelingen

ERC ADG

Development and Application of Ultrafast Low-Energy Electron Microscopy

This project develops Ultrafast Low-Energy Electron Microscopy to observe rapid surface dynamics with high resolution, aiming to enhance understanding of phase transformations and energy transfer in materials.

€ 2.488.216
ERC POC

Nanofluidic chips for reproducible cryo-EM sample preparation with picoliter sample volumes

Developing a nanofluidic chip for cryo-EM to enhance sample preparation, reduce consumption, and enable time-resolved imaging for drug design applications.

€ 150.000
ERC STG

Development of Reconstructed Electron Energy Loss techniques for Elemental Mapping in macromolecular structures

Develop a novel method, REEL-EM, for atomic-resolution elemental mapping in macromolecular complexes to enhance structural accuracy and detect single atoms at 1-nm resolution.

€ 1.723.334
ERC SyG

4D scanning transmission electron microscopy for structural biology

This project aims to develop advanced 4D-BioSTEM methodologies for cryo-EM to enhance contrast and resolution, enabling structure determination of small proteins and complex biological samples.

€ 7.489.397