SubsidieMeesters logoSubsidieMeesters
ProjectenRegelingenAnalyses

Dissecting the molecular regulation of hematopoietic stem cell emergence using pluripotent stem cells to improve ex vivo therapies

This project aims to develop methods for generating and expanding hematopoietic stem cells from patient-specific induced pluripotent stem cells to overcome transplantation barriers and enhance therapies.

Subsidie
€ 2.000.000
2023

Projectdetails

Introduction

Although hematopoietic stem cell (HSC) transplantation is routinely used to treat blood disorders, immune incompatibility and donor shortage remain critical clinical barriers.

Challenges in HSC Transplantation

Likewise, since a high number of HSCs are needed for successful transplants, the absence of reliable expansion protocols prevents the wider application of this cell therapy. In fact, while HSC-based gene therapy represents a revolutionary treatment also for novel and unexpected indications, the ex vivo manipulation required for HSCs engineering results in loss of their stemness potential.

Potential of Patient-Specific Induced Pluripotent Stem Cells

Patient-specific induced pluripotent stem cells (PSCs) could serve as a solution to these problems, as they would provide a potentially unlimited, easy to engineer source of immunologically matched HSCs. However, despite recent advances, the robust de novo generation of HSCs remains unrealized due to an incomplete understanding of how HSCs are generated during embryonic development, a process that, as such, cannot be accurately recapitulated in vitro.

Proposed Solutions

To tackle these issues, in this proposal we will leverage our proven expertise in PSC differentiation and hematopoietic development.

Aim 1: Molecular Control of Gene Expression

In particular, we will use innovative in vitro assays and systematic measurements to determine at the molecular level how HSC precursors control their gene expression to generate blood cells.

Aim 2: Uncovering Molecular Regulators

Combining the study of the highly proliferative emerging embryonic HSCs with a CRISPR-based gain-of-function screen, we will uncover the molecular regulators of the extensive embryonic self-renewal, thus enabling robust specification of HSCs from PSCs.

Aim 3: Resurrecting Embryonic Self-Renewal

We will design strategies to resurrect this embryonic self-renewal program in postnatal HSCs for their in vitro expansion.

Conclusion

The successful completion of these studies will accomplish the long-standing goals of generating and expanding HSCs in vitro, allowing the full exploitation of the transformative therapeutic potential of HSC-based cell and gene therapies.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 2.000.000
Totale projectbegroting€ 2.000.000

Tijdlijn

Startdatum1-3-2023
Einddatum29-2-2028
Subsidiejaar2023

Partners & Locaties

Projectpartners

  • OSPEDALE SAN RAFFAELE SRLpenvoerder

Land(en)

Italy

Inhoudsopgave

European Research Council

Financiering tot €10 miljoen voor baanbrekend frontier-onderzoek via ERC-grants (Starting, Consolidator, Advanced, Synergy, Proof of Concept).

Bekijk regeling

Vergelijkbare projecten binnen European Research Council

ProjectRegelingBedragJaarActie

TACKLING FUNCTIONAL MATURATION FOR TRANSPLANTABLE HEMATOPOIETIC STEM CELL GENERATION

FUN-HSC aims to identify and mimic maturation pathways of hematopoietic stem cells from pluripotent stem cells to create a reliable, clinically valuable source for diverse therapies.

ERC Consolid...€ 2.265.684
2024
Details

How is blood (re-)made? Regeneration of human hematopoietic stem cells after transplantation

RESTART aims to enhance survival in pediatric HSCT by using multiomics to characterize human HSPC regeneration and identify predictors of adverse outcomes.

ERC Starting...€ 1.500.000
2024
Details

Transcriptional Engineering of Hematopoietic Stem Cells using CRISPR

This project aims to enhance hematopoietic stem cell therapies by using repurposed CRISPR/Cas systems for precise transcriptional manipulation of key genetic pathways.

ERC Starting...€ 1.499.923
2022
Details

Origins and Consequences of Hematopoietic Stem Cell Memories

MemOriStem aims to uncover the origins and mechanisms of hematopoietic stem cell memories to enhance regenerative therapies for chronic inflammation, aging, and cancer.

ERC Starting...€ 1.500.000
2022
Details

Understanding Diagnosing and Early intervention in the Myeloid malignancy Continuum

The Shlush lab aims to improve early diagnosis and treatment of myeloid malignancies by developing advanced diagnostic tools, exploring preleukemic mutations, and identifying targeted therapies.

ERC Consolid...€ 2.000.000
2025
Details
ERC Consolid...

TACKLING FUNCTIONAL MATURATION FOR TRANSPLANTABLE HEMATOPOIETIC STEM CELL GENERATION

FUN-HSC aims to identify and mimic maturation pathways of hematopoietic stem cells from pluripotent stem cells to create a reliable, clinically valuable source for diverse therapies.

ERC Consolidator Grant
€ 2.265.684
2024
Details
ERC Starting...

How is blood (re-)made? Regeneration of human hematopoietic stem cells after transplantation

RESTART aims to enhance survival in pediatric HSCT by using multiomics to characterize human HSPC regeneration and identify predictors of adverse outcomes.

ERC Starting Grant
€ 1.500.000
2024
Details
ERC Starting...

Transcriptional Engineering of Hematopoietic Stem Cells using CRISPR

This project aims to enhance hematopoietic stem cell therapies by using repurposed CRISPR/Cas systems for precise transcriptional manipulation of key genetic pathways.

ERC Starting Grant
€ 1.499.923
2022
Details
ERC Starting...

Origins and Consequences of Hematopoietic Stem Cell Memories

MemOriStem aims to uncover the origins and mechanisms of hematopoietic stem cell memories to enhance regenerative therapies for chronic inflammation, aging, and cancer.

ERC Starting Grant
€ 1.500.000
2022
Details
ERC Consolid...

Understanding Diagnosing and Early intervention in the Myeloid malignancy Continuum

The Shlush lab aims to improve early diagnosis and treatment of myeloid malignancies by developing advanced diagnostic tools, exploring preleukemic mutations, and identifying targeted therapies.

ERC Consolidator Grant
€ 2.000.000
2025
Details

Vergelijkbare projecten uit andere regelingen

ProjectRegelingBedragJaarActie

Exploiting ex vivo expansion and deep multiomics profiling to bring novel, efficient and safer hematopoietic stem cell gene therapies to clinical application

This project aims to innovate hematopoietic stem cell identification and engineering through advanced culture techniques and multiomics profiling, enhancing gene therapy for blood disorders and cancer.

EIC Pathfinder€ 3.797.562
2022
Details

NOn-VIral gene modified STEM cell therapy

This project aims to develop a high-throughput protocol for producing gene-corrected CAR T cells and blood stem cells using optimized photoporation and CRISPR technology for enhanced clinical application.

EIC Pathfinder€ 3.644.418
2022
Details

AI-powered platform for autologous iPSC manufacturing

The project aims to develop an AI-guided microfluidic device for the standardized, cost-effective mass production of personalized iPSCs to enhance cancer therapies and tissue regeneration.

EIC Pathfinder€ 3.999.225
2022
Details

New Prime Editing and non-viral delivery strategies for Gene Therapy

This project aims to develop non-viral delivery systems and novel prime editors to enhance gene editing efficiency and safety for treating Sickle Cell Disease and other genetic disorders.

EIC Pathfinder€ 4.406.097
2022
Details

Hyper-targeting CAR NK cells from induced pluripotent stem cells for novel off-the-shelf anti-tumor therapies

The HyperTargIPS-NK project aims to develop a scalable, off-the-shelf NK cell therapy using iPS cells to target and treat lethal cancers like pancreatic cancer, glioblastoma, and AML.

EIC Pathfinder€ 3.798.713
2023
Details
EIC Pathfinder

Exploiting ex vivo expansion and deep multiomics profiling to bring novel, efficient and safer hematopoietic stem cell gene therapies to clinical application

This project aims to innovate hematopoietic stem cell identification and engineering through advanced culture techniques and multiomics profiling, enhancing gene therapy for blood disorders and cancer.

EIC Pathfinder
€ 3.797.562
2022
Details
EIC Pathfinder

NOn-VIral gene modified STEM cell therapy

This project aims to develop a high-throughput protocol for producing gene-corrected CAR T cells and blood stem cells using optimized photoporation and CRISPR technology for enhanced clinical application.

EIC Pathfinder
€ 3.644.418
2022
Details
EIC Pathfinder

AI-powered platform for autologous iPSC manufacturing

The project aims to develop an AI-guided microfluidic device for the standardized, cost-effective mass production of personalized iPSCs to enhance cancer therapies and tissue regeneration.

EIC Pathfinder
€ 3.999.225
2022
Details
EIC Pathfinder

New Prime Editing and non-viral delivery strategies for Gene Therapy

This project aims to develop non-viral delivery systems and novel prime editors to enhance gene editing efficiency and safety for treating Sickle Cell Disease and other genetic disorders.

EIC Pathfinder
€ 4.406.097
2022
Details
EIC Pathfinder

Hyper-targeting CAR NK cells from induced pluripotent stem cells for novel off-the-shelf anti-tumor therapies

The HyperTargIPS-NK project aims to develop a scalable, off-the-shelf NK cell therapy using iPS cells to target and treat lethal cancers like pancreatic cancer, glioblastoma, and AML.

EIC Pathfinder
€ 3.798.713
2023
Details

SubsidieMeesters logoSubsidieMeesters

Vind en verken subsidieprojecten in Nederland en Europa.

Links

  • Projecten
  • Regelingen
  • Analyses

Suggesties

Heb je ideeën voor nieuwe features of verbeteringen?

Deel je suggestie
© 2025 SubsidieMeesters. Alle rechten voorbehouden.