Decoding and targeting the PGE2-MEF2A axis in tumor-associated macrophages

The MEFHISTO project aims to explore the PGE2-MEF2A pathway in tumor-associated macrophages to develop novel immunotherapy strategies for pancreatic cancer.

Subsidie
€ 2.000.000
2023

Projectdetails

Introduction

Inflammation is a complex spectrum of processes whose outcomes range from cell killing to tissue regeneration. In this context, a major goal in immune oncology is the development of treatments that stimulate cytotoxic immunity while limiting repair in the tumor microenvironment (TME). These approaches have the potential to synergize with available immunotherapies and provide benefit to otherwise resistant patients.

Background

Pancreatic cancer is a largely incurable disease, in which aberrant inflammation and profound immune suppression conspire to sustain disease initiation, progression, and immune escape. Accumulating evidence supports the view that tumor-associated macrophages (TAMs) are key orchestrators of the balance between cytotoxicity and regeneration, and thus represent promising therapeutic targets in pancreatic cancer.

Objectives

In MEFHISTO, we aim at elucidating the following:

  1. The molecular control of the PGE2-MEF2A axis.
  2. The functional implications of this pathway.
  3. The therapeutic potential of targeting the PGE2-MEF2A axis.

This newly described pathway enables selective control of inflammatory gene expression in macrophages.

Methodology

By combining advanced genomic analyses in human samples, functional experiments in preclinical models, and mechanistic studies in key cell types, this proposal will expand our knowledge of the organizing principles of innate immune responses in tumors.

Expected Outcomes

The ensuing results may lead to novel combinatorial treatments for diseases, such as pancreatic cancer, that are refractory to immunotherapy.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 2.000.000
Totale projectbegroting€ 2.000.000

Tijdlijn

Startdatum1-9-2023
Einddatum31-8-2028
Subsidiejaar2023

Partners & Locaties

Projectpartners

  • UNIVERSITA VITA-SALUTE SAN RAFFAELEpenvoerder
  • OSPEDALE SAN RAFFAELE SRL

Land(en)

Italy

Vergelijkbare projecten binnen European Research Council

ERC STG

MANUNKIND: Determinants and Dynamics of Collaborative Exploitation

This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.

€ 1.497.749
ERC STG

Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure

The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.

€ 1.498.280
ERC STG

Uncovering the mechanisms of action of an antiviral bacterium

This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.

€ 1.500.000
ERC STG

The Ethics of Loneliness and Sociability

This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.

€ 1.025.860

Vergelijkbare projecten uit andere regelingen

ERC STG

Decoding Requirements for Infiltration of T ceLLs into solid tumors

This project aims to enhance T cell infiltration into pancreatic cancer by investigating chemokine regulation and T cell determinants, potentially improving immunotherapy efficacy.

€ 1.521.000
ERC POC

Developing the next generation of cis-targeting macrophage-T cell cancer immunotherapies

This project aims to develop dual-modulatory agents to enhance anti-tumor immune responses in cancer immunotherapy while minimizing side effects, seeking proof-of-concept validation.

€ 150.000
ERC POC

Targeting eicosanoid metabolism to overcome tumor immunosuppression

This project aims to enhance cancer immunotherapy efficacy by targeting HPGDS in tumor-associated macrophages to reshape the immunosuppressive tumor microenvironment and improve patient outcomes.

€ 150.000
ERC ADG

Targeted Re-engineering of the Tumor Matrix to Advance Immunotherapy

This project aims to disrupt the pro-fibrotic loop in pancreatic cancer using engineered biomimetics to enhance immune therapy efficacy by normalizing the tumor microenvironment.

€ 2.499.783