Data-Driven Approaches in Computational Mechanics for the Aerohydroelastic Analysis of Offshore Wind Turbines

DATA-DRIVEN OFFSHORE aims to enhance offshore wind turbine design by integrating experimental data into aerohydroelastic simulations, improving predictive capabilities and enabling efficient upscaling beyond 20 MW.

Subsidie
€ 2.000.000
2023

Projectdetails

Introduction

A massive upscaling of offshore wind turbines is necessary to reach the goals of the European Green Deal. However, current methodologies for analysis and design are at their limits.

Challenges in Current Methodologies

One of the major bottlenecks is that it is so far not possible to directly integrate experimental data into aerohydroelastic simulations of offshore wind turbines. By and large, including these data into the aerohydroelastic analysis is indirectly accomplished through the offline adjustment of those parameters that define instances of existing models.

Although such a practice can reasonably improve the short-time predictive capability, the underlying models remain unmodified. Thus, further physics available in the data remains inaccessible. In the numerical simulation context, this represents a main challenge to taking advantage of the experimental data in their entirety.

Proposed Solution: DATA-DRIVEN OFFSHORE

In this context, DATA-DRIVEN OFFSHORE proposes to simultaneously integrate these highly-valuable data into aerohydroelastic simulations through data-driven computational mechanics. Such an approach is one of the most advanced computing frameworks and relies on the reformulation of classical boundary and initial value problems in solid and fluid mechanics such that:

  1. Constitutive models
  2. Boundary conditions
  3. Applied loads

are directly replaced by some form of experimental data.

Expected Outcomes

DATA-DRIVEN OFFSHORE will thus enable for the first time investigation of the aerohydroelastic behavior of an offshore wind turbine relying truly on experimental data, capturing the hidden features that these contain.

This will greatly improve the predictive capabilities with respect to existing models, allow the conception of less-conservative designs, and enable upscaling beyond 20 MW of rated power, increasing the efficiency while reducing the cost per unit of power produced.

Thus, it will contribute to triggering a change of paradigm for future generations of offshore wind turbines.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 2.000.000
Totale projectbegroting€ 2.000.000

Tijdlijn

Startdatum1-4-2023
Einddatum31-3-2028
Subsidiejaar2023

Partners & Locaties

Projectpartners

  • UNIVERSITETET I BERGENpenvoerder

Land(en)

Norway

Vergelijkbare projecten binnen European Research Council

ERC STG

MANUNKIND: Determinants and Dynamics of Collaborative Exploitation

This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.

€ 1.497.749
ERC STG

Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure

The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.

€ 1.498.280
ERC STG

Uncovering the mechanisms of action of an antiviral bacterium

This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.

€ 1.500.000
ERC STG

The Ethics of Loneliness and Sociability

This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.

€ 1.025.860

Vergelijkbare projecten uit andere regelingen

ERC STG

Simulating coastal HydrOdynamics and particle tRansport procEsses

SHORE aims to develop an innovative model to accurately simulate sediment and microplastic transport in coastal regions, addressing climate change impacts and improving environmental predictions.

€ 1.497.100
MIT Haalbaarheid

Optimized Calibration of Windpark Energy (Opti- Wind)

OPTECS ontwikkelt een AI om de energie-output en kwaliteit van offshore windparken te verbeteren, met als doel de duurzame energieproductie in Nederland te verhogen.

€ 20.000
MIT Haalbaarheid

Sustainable Wind Turbines Software (SWTS)

Dit project onderzoekt hoe data en AI kunnen worden ingezet om de kosten van offshore windturbines te verlagen, hun levensduur te verlengen en de elektriciteitsopbrengst te verbeteren.

€ 18.760
MIT R&D Samenwerking

Ontwikkeling van een Wave Predictor en Wave Analyzer

Dit project richt zich op het verbeteren van de voorspelbaarheid van golfhoogtes in de offshore windenergie om risico's te verlagen en de inzetbaarheid van schepen te vergroten.

€ 153.200