CertiFOX: Certified First-Order Model Expansion

This project aims to develop methodologies for ensuring 100% correctness in combinatorial optimization solutions by providing end-to-end proof logging from user specifications to solver outputs.

Subsidie
€ 1.999.928
2024

Projectdetails

Introduction

The field of combinatorial optimization is concerned with developing generic tools that take a declarative problem description and automatically compute an optimal solution to it. Often, users specify their problem in a high-level, human-understandable formal language. This specification is first translated into a low-level specification a solver understands and subsequently solved.

Thanks to tremendous progress in solving technology, we can now solve a wide variety of NP-hard (or worse) problems in practice. Moreover, these tools are increasingly used in real-life applications, including high-value and life-affecting decisions. Therefore, it is of utmost importance that they be completely reliable. The central objective of this proposal is to develop methodologies and tools with which we can guarantee with 100% certainty that the right problem has been solved correctly.

Objective

To achieve this ambitious objective, I will build on recent breakthroughs in proof logging, where solvers do not just output an answer, but also a proof (or certificate) of correctness. However, a major limitation of current techniques is that correctness is not proven relative to the human-understandable specification written by the user, but relative to the low-level translation that the solver receives. This means that there is no guarantee that the solver is solving the original problem.

Methodology

In this project, I will investigate end-to-end guarantees of correctness. When successful, this will have a major impact on the way combinatorial optimization software is developed, evaluated, and used. The proofs produced will enable:

  1. Debugging: Since proofs contain detailed information about where bugs occurred.
  2. Auditability: Since proofs can be stored and checked by an independent third party.
  3. Rigorous evaluation of algorithmic improvements: For instance, I have first-hand experience of winning a solver competition due to a bug that would have been caught easily using proof logging.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 1.999.928
Totale projectbegroting€ 1.999.928

Tijdlijn

Startdatum1-10-2024
Einddatum30-9-2029
Subsidiejaar2024

Partners & Locaties

Projectpartners

  • KATHOLIEKE UNIVERSITEIT LEUVENpenvoerder
  • VRIJE UNIVERSITEIT BRUSSEL

Land(en)

Belgium

Vergelijkbare projecten binnen European Research Council

ERC STG

MANUNKIND: Determinants and Dynamics of Collaborative Exploitation

This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.

€ 1.497.749
ERC STG

Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure

The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.

€ 1.498.280
ERC STG

Uncovering the mechanisms of action of an antiviral bacterium

This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.

€ 1.500.000
ERC STG

The Ethics of Loneliness and Sociability

This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.

€ 1.025.860

Vergelijkbare projecten uit andere regelingen

ERC STG

Fast Proofs for Verifying Computations

The FASTPROOF project aims to enhance computational proof-systems by minimizing interaction, reducing proving time to linear complexity, and optimizing memory usage, while relying on cryptographic assumptions.

€ 1.435.000
ERC ADG

Local-to-global Expansion and PCPs

This project aims to advance the study of Probabilistically Checkable Proofs using high-dimensional expansion theory to develop simpler PCP constructions and enhance local-to-global encoding understanding.

€ 2.105.840
ERC STG

Holistic Rigorous Numerical Verification

The project aims to develop an automated verification and debugging framework for numerical programs that ensures accuracy in finite-precision computations while enhancing usability for developers.

€ 1.498.976
ERC STG

Systematic and computer-aided performance certification for numerical optimization

The project aims to enhance theoretical foundations of numerical optimization to bridge the gap between theory and practice, developing robust algorithms and certification tools for complex applications.

€ 1.497.650