Building Virtual Worlds that Follow Universal Laws of Physics

Developing the Foundation simulator will create advanced 3D planetary climate models to improve understanding of diverse atmospheres, enhance Earth climate predictions, and aid exoplanet characterization.

Subsidie
€ 1.999.024
2024

Projectdetails

Introduction

Planetary climate models are essential to understanding the climate on Earth while also being windows into the many climates that may exist throughout the Universe. However, current models often fail to simulate planets that diverged from Earth-like conditions as they rely on Earth-centric formulations and suffer a shortage of first principle representations. This severely impacts our ability to understand and predict climate change and evolution, as the physical accuracy of the simulations is compromised.

Project Overview

To solve this current gap in our knowledge, I will lead the development of the first planet climate simulator, Foundation. My central role in developing unprecedented 3D planetary atmospheric models from scratch sets me in an advantageous position to successfully lead this ambitious project.

Goals and Methodology

Our goal is to use the building blocks of physical processes we know occur in atmospheres, such as:

  1. Fluid flow equations
  2. Moist physics
  3. Cloud formation

We will build up climate physics in a 3D model that achieves accurate simulations. Our novel model will address climate phenomena that remain unsolved in the Solar System due to current model limitations, namely:

  • The nature of Jupiter's chaotic atmosphere
  • Venus's deep atmospheric circulation
  • Titan's methane cycle

These are major gaps in our knowledge, even with more than 50 years of spacecraft data.

Importance of the Model

A model based on Universal physics that can reproduce the most challenging climates of the Solar System is extremely valuable to evaluate Earth's climate model predictions. Our approach can strongly impact the robustness of Earth's changing climate simulations and the prediction of extreme weather events, which are becoming increasingly more critical to our living environment.

Future Implications

Foundation's greater climate prediction capabilities will also revolutionize exoplanet atmospheric characterization and provide a thorough theory on the climate stability of terrestrial planets, essential to our understanding of climate diversity.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 1.999.024
Totale projectbegroting€ 1.999.024

Tijdlijn

Startdatum1-6-2024
Einddatum31-5-2029
Subsidiejaar2024

Partners & Locaties

Projectpartners

  • DANMARKS TEKNISKE UNIVERSITETpenvoerder

Land(en)

Denmark

Vergelijkbare projecten binnen European Research Council

ERC STG

MANUNKIND: Determinants and Dynamics of Collaborative Exploitation

This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.

€ 1.497.749
ERC STG

Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure

The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.

€ 1.498.280
ERC STG

Uncovering the mechanisms of action of an antiviral bacterium

This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.

€ 1.500.000
ERC STG

The Ethics of Loneliness and Sociability

This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.

€ 1.025.860

Vergelijkbare projecten uit andere regelingen

ERC STG

EXOplanet Diversity and the Origin of the Solar System

EXODOSS aims to enhance our understanding of terrestrial planet formation by modeling the growth process from primordial pebbles to fully-grown planetary systems using advanced simulations.

€ 1.498.943
ERC ADG

Planetary space simulations based on the particle description for electrons and ions.

Develop a particle-based PIC model using ECsim to analyze solar storm impacts on planetary environments, enhancing understanding of energy transfer and infrastructure protection.

€ 518.233
ERC ADG

Open Superior Efficient Solar Atmosphere Model Extension

Develop a high-order GPU-enabled 3D time-evolving multi-fluid model of the solar atmosphere to enhance understanding of solar wind, flares, and CMEs for improved Earth impact predictions.

€ 2.498.230
ERC ADG

Virtual planets to unravel how mantle convection shapes geosphere, climate and life co-evolution

This project aims to uncover how mantle convection influences Earth's surface environment and biodiversity through advanced 3D simulations and machine learning over geological time scales.

€ 2.144.646