Backscattering coherent Stokes Raman scattering (sCiSsoRS) for real-time cancer diagnostics
This project aims to enhance real-time cancer diagnosis during surgery by developing backward Coherent Stokes Raman Scattering (CSRS) for rapid, HE-like imaging of thick tissue samples.
Projectdetails
Introduction
The gold-standard for cancer diagnosis is the pathological examination of Hematoxylin & Eosin (HE) stained tissue. Though well adopted worldwide for the coloration of large numbers of cancer sections, the classical HE-staining procedure is unable to provide fast feedback to surgeons within less than 30 minutes. This latency compromises the efficiency and accuracy of any tumor resection, with numerous negative impacts on the success of the surgery and the patient’s health prospects.
Current Limitations
Recently, the chemical-bond-specific image contrast provided by stimulated Raman scattering (SRS) was shown to be suitable for the generation of HE-like images. However, the SRS signal fundamentally propagates forward and is absorbed in thick biopsies, rendering SRS-based diagnosis impossible.
Furthermore, the SRS imaging speed is still too slow for the real-time determination of cancer borders in large specimens.
Proposed Solution
Here, I want to resolve these obstacles by combining the non-linear optical contrast Coherent Stokes Raman Scattering (CSRS) with high illumination angles.
- CSRS will permit the generation of HE-like images.
- It will direct the signal photons into the backward direction as a result of a unique momentum conservation law.
- Backward CSRS will allow for the investigation of thick cancer samples and enable technical solutions to boost the imaging speed that were never an option before.
Conclusion
Thus, the development of CSRS is not only a scientific breakthrough that circumvents the fundamental dogma of always forward scattered light but will also provide HE-like images of thick samples as real-time feedback to improve the success rate and time efficiency of cancer surgery.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.432.705 |
Totale projectbegroting | € 2.432.705 |
Tijdlijn
Startdatum | 1-9-2024 |
Einddatum | 31-8-2029 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRSpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Vibrational speckle tomography microscopy for fast intra-operative cancer tissue histopathologyThe SpeckleCARS project aims to develop fast, label-free 3D histology imaging for real-time cancer diagnosis and treatment, eliminating the need for biopsies and improving accuracy and accessibility. | ERC ADG | € 2.726.936 | 2023 | Details |
Chemometric histopathology via coherent Raman imaging for precision medicineThe CHARM project aims to revolutionize cancer diagnosis with a novel AI-integrated, label-free tissue analysis system, achieving high accuracy in tumor identification and classification. | EIC Transition | € 2.441.979 | 2022 | Details |
In vivo Immunofluorescence-Optical Coherence TomographyDevelop a high-resolution endoscopic imaging system combining Optical Coherence Tomography and fluorescent antibodies for improved diagnosis and treatment of esophageal cancer and lung disease. | ERC ADG | € 2.500.000 | 2025 | Details |
Multimodal Hypersprectal Imaging and Raman Spectroscopy for Intraoperative Assessment of Breast Tumor Resection MarginsSpectra-BREAST aims to enhance tumor margin assessment in breast conserving surgery using a novel multimodal approach for real-time, accurate feedback, improving patient outcomes and reducing reoperation rates. | EIC Pathfinder | € 2.990.207 | 2024 | Details |
Vibrational speckle tomography microscopy for fast intra-operative cancer tissue histopathology
The SpeckleCARS project aims to develop fast, label-free 3D histology imaging for real-time cancer diagnosis and treatment, eliminating the need for biopsies and improving accuracy and accessibility.
Chemometric histopathology via coherent Raman imaging for precision medicine
The CHARM project aims to revolutionize cancer diagnosis with a novel AI-integrated, label-free tissue analysis system, achieving high accuracy in tumor identification and classification.
In vivo Immunofluorescence-Optical Coherence Tomography
Develop a high-resolution endoscopic imaging system combining Optical Coherence Tomography and fluorescent antibodies for improved diagnosis and treatment of esophageal cancer and lung disease.
Multimodal Hypersprectal Imaging and Raman Spectroscopy for Intraoperative Assessment of Breast Tumor Resection Margins
Spectra-BREAST aims to enhance tumor margin assessment in breast conserving surgery using a novel multimodal approach for real-time, accurate feedback, improving patient outcomes and reducing reoperation rates.