Atomic-Scale Tailored Materials for Electrochemical Methane Activation and Production of Valuable Chemicals
ATOMISTIC aims to develop innovative electrochemical methods for converting methane into methanol and dimethyl carbonate, enhancing sustainability and selectivity through advanced materials and techniques.
Projectdetails
Introduction
Electrochemical methane activation and direct conversion to methanol is highly attractive – a dream reaction that would convert a greenhouse gas into a valuable liquid fuel in a dream device, on-site, and powered by renewable electricity. However, sustainable C-H activation and direct methane to methanol conversion at ambient conditions remain as great fundamental challenges.
Objectives
My aim with ATOMISTIC is:
- To develop new methods for electrochemical methane activation and partial oxidation.
- To control the structure of the electrochemical interface and the catalytically active site, in order to tune selectivity for the synthesis of valuable fuels and chemicals (such as methanol) from methane, and dimethyl carbonate from methanol.
Strategies
I will use three main strategies:
- To establish the ideal structures and electrolytes, using well-defined tailored materials that enable methane activation by its direct adsorption on the electrode material.
- To realize advanced materials that enable the indirect electrochemical activation of methane through the generation of solution phase radicals.
- To tailor the active site at the atomic level for selective methane to methanol and methanol to dimethyl carbonate oxidation reactions on functional materials.
Methodology
I will elucidate the design principles and unveil the structure-reactivity-selectivity relations and the molecular mechanisms of these reactions as well as the atomic-scale structure of the catalyst materials.
I will achieve these ambitious goals by leveraging my work combining the insight from model studies with experiments under realistic conditions to discover new materials.
Techniques
I will combine:
- Electrochemical methods
- Electrochemical scanning probe microscopy
- In situ optical spectroscopy
- Online mass spectrometry
- Operando synchrotron-based x-ray techniques
Expected Outcomes
The success of ATOMISTIC will result in significant breakthroughs in the fields of chemistry and catalysis, opening up new sustainable ways to produce valuable chemicals.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.999.774 |
Totale projectbegroting | € 1.999.774 |
Tijdlijn
Startdatum | 1-6-2023 |
Einddatum | 31-5-2028 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- FUNDACIO INSTITUT CATALA DE NANOCIENCIA I NANOTECNOLOGIApenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Controlling Oxygen Selectivity at the Atomic ScaleCOSAS aims to optimize catalytic properties for sustainable energy by studying electrode-electrolyte interfaces using advanced techniques to enhance water oxidation and seawater electrolysis efficiency. | ERC STG | € 2.345.000 | 2023 | Details |
Interface-sensitive Spectroscopy of Atomically-defined Solid/Liquid Interfaces Under Operating ConditionsThe project aims to develop novel operando X-ray spectroscopies to analyze solid/liquid interfaces in electrocatalysis, enhancing understanding for efficient energy conversion and storage. | ERC STG | € 1.500.000 | 2022 | Details |
Single-Atom Catalysts for a New Generation of Chemical Processes: from Fundamental Understanding to Interface EngineeringThis project aims to develop innovative single-atom catalysts for CO2 conversion through advanced synthesis and characterization techniques, enhancing sustainability in chemical manufacturing. | ERC STG | € 1.499.681 | 2023 | Details |
Design and synthesis of bulk-active polymeric organic electrocatalysts for efficient electroorganic synthesisPolyElectroCAT aims to develop earth-abundant, carbon-based electrode materials for efficient electroorganic synthesis, enhancing selectivity and reducing reliance on precious metals. | ERC STG | € 1.500.000 | 2024 | Details |
Controlling Oxygen Selectivity at the Atomic Scale
COSAS aims to optimize catalytic properties for sustainable energy by studying electrode-electrolyte interfaces using advanced techniques to enhance water oxidation and seawater electrolysis efficiency.
Interface-sensitive Spectroscopy of Atomically-defined Solid/Liquid Interfaces Under Operating Conditions
The project aims to develop novel operando X-ray spectroscopies to analyze solid/liquid interfaces in electrocatalysis, enhancing understanding for efficient energy conversion and storage.
Single-Atom Catalysts for a New Generation of Chemical Processes: from Fundamental Understanding to Interface Engineering
This project aims to develop innovative single-atom catalysts for CO2 conversion through advanced synthesis and characterization techniques, enhancing sustainability in chemical manufacturing.
Design and synthesis of bulk-active polymeric organic electrocatalysts for efficient electroorganic synthesis
PolyElectroCAT aims to develop earth-abundant, carbon-based electrode materials for efficient electroorganic synthesis, enhancing selectivity and reducing reliance on precious metals.