Adaptive Multi-Drug Infusion Control System for General Anesthesia in Major Surgery
This project aims to enhance anesthesia outcomes by developing a computer-controlled optimization system for multi-drug infusion rates, integrating patient-specific models and predictive control strategies.
Projectdetails
Introduction
A major challenge in anesthesia is to adapt the drug infusion rates from observed patient response to surgical stimuli. The patient models are based on nominal population characteristic responses and lack specific surgical effects. In major surgery (e.g., cardiac, transplant, obese patients), modeling uncertainty stems from significant blood losses, anomalous drug diffusion, drug effect synergy/antagonism, anesthetic-hemodynamic interactions, etc. This complex optimization problem requires superhuman abilities of the anesthesiologist.
Computer Controlled Anesthesia
Computer controlled anesthesia holds the answer to be the game changer for best surgery outcomes. Although few clinical studies report that computer-based anesthesia for one or two drugs outperforms manual management, in reality, clinical practice mitigates a multi-drug optimization problem while accommodating large patient model uncertainty.
The anesthesiologist makes decisions based on future surgeon actions and expected patient response. This is a predictive control strategy, a mature methodology in systems and control engineering with potential to achieve:
- Faster recovery times
- Lower risk of complications
Proposal Goals
The goal of this proposal is to advance the scope and clinical use of computer-based constrained optimization of multi-drug infusion rates for anesthesia with strong effects on hemodynamics.
Methodology
I plan to identify multivariable models and minimize the large uncertainties in patient response. With adaptation mechanisms from nominal to individual patient models, we will design multivariable optimal predictive control methodologies to manage strongly coupled dynamics.
To maximize the performance of the closed loop, we will model the surgical stimulus as a known disturbance signal and additional bolus infusions from the anesthesiologist as known inputs.
Conclusion
I am convinced that the integration of human expertise with computer optimization is a successful solution for breakthrough into clinical practice.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.927.325 |
Totale projectbegroting | € 1.927.325 |
Tijdlijn
Startdatum | 1-10-2022 |
Einddatum | 30-9-2027 |
Subsidiejaar | 2022 |
Partners & Locaties
Projectpartners
- UNIVERSITEIT GENTpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Computational Methods to Analyse Intra-operative Adverse Events in Surgery at ScaleThis project aims to enhance surgical safety by developing a computational method to automatically detect and analyze intra-operative adverse events in endoscopic videos, improving patient care. | ERC Consolid... | € 1.951.931 | 2023 | Details |
Fluid-Structure Interaction and Machine Leaning for Controlling Unruptured Intracranial AneurysmsThis project aims to enhance intracranial aneurysm treatment by developing predictive models and novel stent designs using advanced computational methods and deep reinforcement learning. | ERC Consolid... | € 1.891.333 | 2023 | Details |
Revolutionizing diabetes management by combining in silico models and AI control for vagus neuroprosthesesThe project aims to develop a personalized Vagus Nerve Stimulation neuroprosthesis for automated glucose regulation in diabetics, utilizing AI to optimize stimulation and minimize side effects. | ERC Consolid... | € 1.999.201 | 2025 | Details |
Mechano-modulation of tumor microenvironment with mechanotherapeutics and sonopermeation to optimize nano-immunotherapyThis project aims to enhance drug delivery and treatment efficacy in desmoplastic tumors by synergistically combining mechanotherapeutics and ultrasound sonopermeation, supported by computational modeling. | ERC Starting... | € 1.500.000 | 2023 | Details |
New methodologies for automated modeling of the dynamic behavior of large biological networksAUTOMATHIC aims to develop an automated framework for ODE modeling of cell transport and signaling to enhance drug safety and optimize therapies for chronic kidney disease patients. | ERC Starting... | € 1.500.000 | 2024 | Details |
Computational Methods to Analyse Intra-operative Adverse Events in Surgery at Scale
This project aims to enhance surgical safety by developing a computational method to automatically detect and analyze intra-operative adverse events in endoscopic videos, improving patient care.
Fluid-Structure Interaction and Machine Leaning for Controlling Unruptured Intracranial Aneurysms
This project aims to enhance intracranial aneurysm treatment by developing predictive models and novel stent designs using advanced computational methods and deep reinforcement learning.
Revolutionizing diabetes management by combining in silico models and AI control for vagus neuroprostheses
The project aims to develop a personalized Vagus Nerve Stimulation neuroprosthesis for automated glucose regulation in diabetics, utilizing AI to optimize stimulation and minimize side effects.
Mechano-modulation of tumor microenvironment with mechanotherapeutics and sonopermeation to optimize nano-immunotherapy
This project aims to enhance drug delivery and treatment efficacy in desmoplastic tumors by synergistically combining mechanotherapeutics and ultrasound sonopermeation, supported by computational modeling.
New methodologies for automated modeling of the dynamic behavior of large biological networks
AUTOMATHIC aims to develop an automated framework for ODE modeling of cell transport and signaling to enhance drug safety and optimize therapies for chronic kidney disease patients.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Trainingssysteem voor medische anesthesieMedical-X onderzoekt de haalbaarheid van een innovatief trainingssysteem voor medische anesthesie om zorgprofessionals kosteneffectief en risicoloos te trainen, wat de zorgkwaliteit verbetert. | Mkb-innovati... | € 20.000 | 2021 | Details |
Personalised Adaptive MedicineThe PERAMEDIC project aims to develop a desktop-sized system for personalized polypill formulation using 3D printing and precise dosing to enhance treatment outcomes and patient adherence. | EIC Pathfinder | € 1.726.876 | 2024 | Details |
ARNE: innovatie voor neonatologieHet project ontwikkelt ARNE, een augmented reality-systeem dat neonatologen ondersteunt bij real-time behandelbeslissingen voor pasgeborenen met complicaties, en onderzoekt technische en financiële haalbaarheid. | Mkb-innovati... | € 20.000 | 2020 | Details |
Trainingssysteem voor medische anesthesie
Medical-X onderzoekt de haalbaarheid van een innovatief trainingssysteem voor medische anesthesie om zorgprofessionals kosteneffectief en risicoloos te trainen, wat de zorgkwaliteit verbetert.
Personalised Adaptive Medicine
The PERAMEDIC project aims to develop a desktop-sized system for personalized polypill formulation using 3D printing and precise dosing to enhance treatment outcomes and patient adherence.
ARNE: innovatie voor neonatologie
Het project ontwikkelt ARNE, een augmented reality-systeem dat neonatologen ondersteunt bij real-time behandelbeslissingen voor pasgeborenen met complicaties, en onderzoekt technische en financiële haalbaarheid.