3D Cuprate Twistronics as a platform for high temperature topological superconductivity
3DCuT aims to develop advanced micro/nanodevices for fabricating and controlling twisted cuprate heterostructures to enable high-temperature topological superconductivity for quantum technologies.
Projectdetails
Introduction
2D superconductors can be used to build ultra-clean interfaces for Josephson junctions, the superconducting analog of a transistor. A small twist in the relative crystal orientation of 2D superconductors could become a new platform for topological superconductivity, an exotic state of matter that holds great promise for quantum computing at high temperatures.
Current Developments
Based on my methodological developments for the realization of twisted cuprate ultra-clean interfaces, the field is rapidly evolving. These interfaces are now the leading candidate for the implementation of high-temperature topological superconductivity. However, the combination of well-controlled twisted cuprate heterostructures and complex circuits calls for new experimental methodologies.
Project Overview: 3DCuT
3DCuT will develop micro/nanodevices and techniques to fabricate and control cuprate van der Waals twisted heterostructures in three-dimensional nanoarchitectures:
-
We will develop novel fabrication tools to integrate complex thermal and superconducting circuits in fragile twisted cuprate bilayers. We will explore if a topological gap opens near 'magic' angles in twisted bilayers by studying the Josephson effect.
-
We will fabricate trilayers cuprate heterostructures with different twist angle symmetries, where the topological gap is amplified and time-reversal symmetry broken states appear across a wide range of angles.
-
We will create a heterostructure between a superconducting cuprate twisted heterostructure and a topological insulating crystal, allowing us to create a chiral Majorana edge mode.
Expected Outcomes
At the end of this project, we will have provided a brand-new solid-state tool for emerging quantum technologies in:
- Computation
- Metrology
- Secure communication
- Single-photon imaging
Additionally, we will contribute methodologies for the entire field of 2D materials and a comprehensive understanding of the governing principles and ingredients for topological superconductivity at high temperatures.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.999.712 |
Totale projectbegroting | € 1.999.712 |
Tijdlijn
Startdatum | 1-3-2024 |
Einddatum | 28-2-2029 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- LEIBNIZ INSTITUT FUR FESTKORPER UND WERKSTOFFORSCHUNG DRESDEN EVpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Tailoring Quantum Matter on the FlatlandThis project aims to experimentally realize and manipulate 2D topological superconductors in van der Waals heterostructures using advanced nanofabrication and probing techniques. | ERC STG | € 1.976.126 | 2022 | Details |
Distorting unconventional superconductivity - A grasp of electronic phases with multiple broken symmetriesThis project aims to develop a novel "distortiometry" method to explore the relationship between nematicity and superconductivity in materials, enhancing understanding of unconventional superconductivity. | ERC STG | € 1.499.536 | 2023 | Details |
Interplay between Chirality, Spin Textures and Superconductivity at Manufactured InterfacesSUPERMINT aims to develop a high-performance, non-volatile cryogenic memory using superconductivity and spintronics to enhance quantum computing efficiency through innovative magnetic interfaces. | ERC ADG | € 3.188.750 | 2022 | Details |
TOP-down Superlattice engineering of 2D solid-state quantum matter2DTopS aims to enhance electronic correlations in 2D van der Waals materials through top-down superlattice engineering, enabling new functionalities and quantum phases via tailored minibands. | ERC STG | € 1.945.000 | 2023 | Details |
Tailoring Quantum Matter on the Flatland
This project aims to experimentally realize and manipulate 2D topological superconductors in van der Waals heterostructures using advanced nanofabrication and probing techniques.
Distorting unconventional superconductivity - A grasp of electronic phases with multiple broken symmetries
This project aims to develop a novel "distortiometry" method to explore the relationship between nematicity and superconductivity in materials, enhancing understanding of unconventional superconductivity.
Interplay between Chirality, Spin Textures and Superconductivity at Manufactured Interfaces
SUPERMINT aims to develop a high-performance, non-volatile cryogenic memory using superconductivity and spintronics to enhance quantum computing efficiency through innovative magnetic interfaces.
TOP-down Superlattice engineering of 2D solid-state quantum matter
2DTopS aims to enhance electronic correlations in 2D van der Waals materials through top-down superlattice engineering, enabling new functionalities and quantum phases via tailored minibands.