Unique ALD/MLD-Enabled Material Functions

UniEn-MLD aims to innovate metal-organic materials through advanced ALD/MLD techniques, enabling unique functionalities for applications in magnetic storage and energy solutions.

Subsidie
€ 2.499.645
2023

Projectdetails

Introduction

UniEn-MLD research seeks the extremity of the atomic/molecular layer deposition (ALD/MLD) thin-film technique to enable unforeseen material functionalities. The targeted metal-organic materials and interface-engineered superstructures are designed and elaborated so that the unique advantages of this atomic/molecular precision gas-phase synthesis approach can be best exploited.

Unique Material Assemblies

New science evolves from our aim at:

  1. Unique material assemblies (bonding schemes, crystal structures, layer piling sequences, interface interactions) not accessible through conventional synthesis.
  2. Synergistic combinations of different material functionalities, including those that would be mutually exclusive in conventional materials.

An important project part is the search for new innovative organic components capable of bringing, e.g., structural guidance, redox control, carrier doping, or stimuli-switching into the hybrid material, to create the desired functionalities.

Technical Advantages

The technical advantage follows from the specific ALD/MLD mechanism which yields the new adventurous materials as high-quality large-area homogeneous and conformal coatings, even on demanding surfaces. This opens attractive new avenues for technology advances in important and strongly emerging fields, such as:

  • Efficient magnetic information storage
  • Local energy harvesting and storage

These areas are also addressed within the UniEn-MLD action.

Experience and Feasibility

This project builds on my long experience in frontier functional material research, and my pioneering role in the development of the ALD/MLD technology for building a beautiful variety of intriguing metal-organic materials. Our proof-of-concept results also support the main hypotheses and feasibility of this ambitious UniEn-MLD research.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 2.499.645
Totale projectbegroting€ 2.499.645

Tijdlijn

Startdatum1-6-2023
Einddatum31-5-2028
Subsidiejaar2023

Partners & Locaties

Projectpartners

  • AALTO KORKEAKOULUSAATIO SRpenvoerder

Land(en)

Finland

Vergelijkbare projecten binnen European Research Council

ERC STG

MANUNKIND: Determinants and Dynamics of Collaborative Exploitation

This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.

€ 1.497.749
ERC STG

Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure

The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.

€ 1.498.280
ERC STG

Uncovering the mechanisms of action of an antiviral bacterium

This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.

€ 1.500.000
ERC STG

The Ethics of Loneliness and Sociability

This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.

€ 1.025.860

Vergelijkbare projecten uit andere regelingen

ERC STG

Decoding the Mechanisms Underlying Metal-Organic Frameworks Self-Assembly

MAGNIFY aims to develop a multi-scale computational methodology to decode MOF self-assembly mechanisms, enabling efficient synthesis and rational design of new materials.

€ 1.340.375
ERC STG

Additive Micromanufacturing: Multimetal Multiphase Functional Architectures

AMMicro aims to develop robust 3D MEMS devices using localized electrodeposition and advanced reliability testing to enhance damage sensing and impact protection for diverse applications.

€ 1.498.356
ERC COG

A Research Platform Addressing Outstanding Research Challenges for Nanoscale Design and Engineering of Multifunctional 2D Materials

The project aims to develop a new generation of multifunctional 2D materials from 3D atomic laminates, targeting sustainable applications in energy storage and catalysis through advanced synthesis and engineering.

€ 1.999.940
ERC STG

Quantum Materials for Quantum Devices

Develop new transition metal dichalcogenides for quantum technology, enabling advanced materials with unique properties for ultra-fast, low-power devices.

€ 2.457.970