Ubiquitin-Proteasome System crosstalk with Metabolism
This project aims to elucidate the regulatory crosstalk between ubiquitination and cellular metabolites using advanced biophysical techniques to enhance understanding of metabolic homeostasis.
Projectdetails
Introduction
Cellular metabolites are essential components of life processes, and their import, biosynthesis, and enzymatic conversion are regulated by a wealth of pathways. The ubiquitin-proteasome system (UPS) plays a major role in ensuring that key metabolic regulators are maintained at proper levels, to control concentrations of ions, carbohydrates, amino acids, cofactors, and lipids.
Regulation of Ubiquitination Enzymes
In particular, the activities and localization of critical ubiquitination enzymes (E3 ligases) and the proteasome must be tightly regulated to ensure that degradation is restricted to proteins that are unwanted, superfluous, or toxic, while sparing those proteins needed for ongoing metabolic functions. Nonetheless, we have limited knowledge of fundamental structural and cellular mechanisms underlying this regulation, and the extent of crosstalk between E3 ligases and metabolic signals.
Project Aims
The main aim of this proposal is to decipher molecular principles underlying crosstalk between ubiquitination and metabolites at large.
-
Aim 1: By using time-resolved cryo EM, single-molecule biophysics, cell-based mutagenesis screens, and functional studies, we will provide insights into how E3 ligases regulate key mediators of glucose, ion, and lipid homeostasis.
-
Aim 2: To further increase knowledge of the breadth and depth of crosstalk between metabolic pathways and the UPS, we will use our toolkit of E3 ligases and probes to define regulatory interactions between a wide swath of metabolites and E3 ligases, and to identify E3s activated upon switches in metabolic conditions.
-
Aim 3: Moreover, we will explore how E3 ligases and proteasomes are reorganized at an ultrastructural level inside cells to respond to starvation or nutrient-rich conditions.
Conclusion
Taken together, these interdisciplinary approaches will establish a framework to translate conceptual and technical advances across molecular, structural, cell biological, and systems levels, to broadly illuminate coordination between metabolic signals and the UPS.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.089.688 |
Totale projectbegroting | € 2.089.688 |
Tijdlijn
Startdatum | 1-10-2023 |
Einddatum | 30-9-2028 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EVpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Unravelling specificity of epi-metabolic regulation in mouse developmentThis project aims to uncover how metabolic changes influence epigenetic outcomes during mouse embryo implantation, using multi-omic approaches and mechanistic experiments to explore regulatory processes. | ERC STG | € 1.500.000 | 2023 | Details |
ADPribosylation and Ubiquitination; post-translational interplayThis project aims to investigate the interplay between ubiquitination and ADPribosylation in cellular processes to develop novel therapeutic strategies for diseases like infections and cancer. | ERC COG | € 1.999.625 | 2024 | Details |
Improving plant immunity by synthetic exploitation of the ubiquitin systemThe SynUbL project aims to uncover the evolutionary mechanisms of E3 ligases in plant immunity and engineer novel ligases for durable resistance against the fungal pathogen Puccinia hordei in barley. | ERC COG | € 1.850.374 | 2025 | Details |
Deciphering the regulatory logic of the ubiquitin systemThis project aims to elucidate the substrate recognition mechanisms of E3 ubiquitin ligases using functional genetic approaches to enhance understanding of the ubiquitin-proteasome system for therapeutic applications. | ERC STG | € 1.528.843 | 2025 | Details |
Unravelling specificity of epi-metabolic regulation in mouse development
This project aims to uncover how metabolic changes influence epigenetic outcomes during mouse embryo implantation, using multi-omic approaches and mechanistic experiments to explore regulatory processes.
ADPribosylation and Ubiquitination; post-translational interplay
This project aims to investigate the interplay between ubiquitination and ADPribosylation in cellular processes to develop novel therapeutic strategies for diseases like infections and cancer.
Improving plant immunity by synthetic exploitation of the ubiquitin system
The SynUbL project aims to uncover the evolutionary mechanisms of E3 ligases in plant immunity and engineer novel ligases for durable resistance against the fungal pathogen Puccinia hordei in barley.
Deciphering the regulatory logic of the ubiquitin system
This project aims to elucidate the substrate recognition mechanisms of E3 ubiquitin ligases using functional genetic approaches to enhance understanding of the ubiquitin-proteasome system for therapeutic applications.