Triangulated categories and their applications, chiefly to algebraic geometry

This project aims to extend a new theory of triangulated categories using metrics and approximations while advancing the understanding of Fourier-Mukai functors through recent techniques.

Subsidie
€ 1.042.645
2023

Projectdetails

Project Components

There are two components to this project.

Component 1: Development of New Theory

  1. Develop and extend the striking new theory, created by the PI in the last few years, which studies triangulated categories via metrics and approximations.

In the case of Component 1, the novel idea of appropriately using metrics has already allowed the PI to prove several difficult conjectures, the most recent just a few weeks ago. The potential of the new theory is immense, and this project aims to extend the scope of the methods and apply them widely.

The project also aims to work out the implications of a surprising theorem proved by the methods, which shows that the derived category of perfect complexes and the bounded derived category of coherent sheaves are constructible from each other, as triangulated categories, by an explicit recipe. This theorem flies in the face of accepted wisdom, which viewed the two categories as totally different. Thus, a whole body of work analyzing the many differences between these derived categories needs to be carefully revisited and reconsidered in the light of the new construction.

Component 2: Understanding Fourier-Mukai Functors

  1. Build on very recent work to better understand which functors are Fourier-Mukai and which aren't.

The Fourier-Mukai transforms of Component 2 have a long and venerable history, with beautiful work by many authors. However, there were novel techniques introduced in a couple of recent articles, and the project plans to deploy them more widely. The aim is for a breakthrough in the area, leading to a better understanding of which exact functors are Fourier-Mukai and which aren't.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 1.042.645
Totale projectbegroting€ 1.042.645

Tijdlijn

Startdatum1-9-2023
Einddatum31-8-2027
Subsidiejaar2023

Partners & Locaties

Projectpartners

  • UNIVERSITA DEGLI STUDI DI MILANOpenvoerder

Land(en)

Italy

Vergelijkbare projecten binnen European Research Council

ERC STG

MANUNKIND: Determinants and Dynamics of Collaborative Exploitation

This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.

€ 1.497.749
ERC STG

Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure

The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.

€ 1.498.280
ERC STG

Uncovering the mechanisms of action of an antiviral bacterium

This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.

€ 1.500.000
ERC STG

The Ethics of Loneliness and Sociability

This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.

€ 1.025.860

Vergelijkbare projecten uit andere regelingen

ERC STG

Correspondences in enumerative geometry: Hilbert schemes, K3 surfaces and modular forms

The project aims to establish new correspondences in enumerative geometry linking Gromov-Witten and Donaldson-Thomas theories, enhancing understanding of K3 surfaces and modular forms.

€ 1.429.135
ERC STG

Spectral Geometry of Higher Categories

This project aims to develop higher Zariski geometry to enhance homotopy theory, algebraic geometry, and representation theory, yielding new tools for resolving key conjectures in these fields.

€ 1.500.000
ERC STG

Definable Algebraic Topology

This project aims to enhance algebraic topology and coarse geometry by integrating Polish covers with homological invariants, leading to new classification methods and insights in mathematical logic.

€ 989.395
ERC COG

Surfaces on fourfolds

This project aims to explore and count surfaces and representations in 4-dimensional spaces, revealing new geometric properties and connections to the Hodge conjecture and singularity resolutions.

€ 1.870.000