SubsidieMeesters logoSubsidieMeesters
ProjectenRegelingenAnalyses

The Silent Phase of Alzheimer’s Disease: From Brain States to Homeostatic Failures

This project aims to uncover the mechanisms stabilizing hippocampal circuits and their relation to Alzheimer's disease by exploring homeostatic regulation across brain states using diverse experimental tools.

Subsidie
€ 2.500.000
2023

Projectdetails

Introduction

Neuronal circuits must balance stability and plasticity. How this balance is compromised in brain disorders remains one of the most fundamental questions in neuroscience. Pioneering studies in the field established that homeostatic mechanisms stabilize the function of a system at a set-point level of activity. Recently, we have identified bona fide mitochondrial regulators of activity set points and provided support to our standing hypothesis that homeostatic failures destabilize network activity in Alzheimer's disease (AD). However, we have just scratched the surface of the mechanisms stabilizing activity set points in vivo.

Proposed Framework

I propose a conceptual and experimental framework to identify the cellular-molecular and circuit-wide in vivo mechanisms underlying the stability of hippocampal circuits across distinct brain states and the stability-plasticity balance.

Methodology

Using a wide range of optical, electrophysiological, computational, and molecular tools, we will explore homeostatic regulation of activity in hippocampal circuitry, a crucial substrate for memory formation, and its relation to AD.

  1. Establish governing principles of homeostatic regulation in the physiological context of sleep and learning.
  2. Explore the underlying molecular drivers of homeostatic regulation.
  3. Test the causal relationship between dyshomeostasis of activity in hippocampal circuits, sleep disturbances, and cognitive decline in AD models.

Integrative Approach

To target these questions, we will utilize the basic concepts of control theory and an integrative approach which spans brain-state, neural circuit, synaptic, and molecular levels.

Significance

We believe that this understanding is an essential step to uncover the principal basis underlying the transition from a presymptomatic disease stage to clinically evident cognitive AD impairments. The proposed research will elucidate fundamental principles of neuronal function and reveal conceptually novel insights into how to maintain AD in a dormant state.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 2.500.000
Totale projectbegroting€ 2.500.000

Tijdlijn

Startdatum1-10-2023
Einddatum30-9-2028
Subsidiejaar2023

Partners & Locaties

Projectpartners

  • TEL AVIV UNIVERSITYpenvoerder

Land(en)

Israel

Inhoudsopgave

European Research Council

Financiering tot €10 miljoen voor baanbrekend frontier-onderzoek via ERC-grants (Starting, Consolidator, Advanced, Synergy, Proof of Concept).

Bekijk regeling

Vergelijkbare projecten binnen European Research Council

ProjectRegelingBedragJaarActie

Combinatorial neuromodulation of internal states

This project aims to investigate how combinations of neuromodulators influence neuronal dynamics and circuit configurations in the hippocampus-prefrontal circuit during various behavioral states in mice.

ERC Starting...€ 1.499.563
2025
Details

Window to the brain: a game changer in the discovery of human neuronal circuitry, cellular heterogenicity and biomarker profile indicative of early Alzheimer's disease -related pathology

The project aims to investigate how specific microglial subpopulations impair neuronal functions in early Alzheimer's pathology using unique human brain samples and advanced techniques to identify novel biomarkers.

ERC Consolid...€ 1.998.389
2022
Details

The synaptic active zone as a signaling hub for sleep homeostasis and resilience

The SynProtect project aims to investigate the role of presynaptic active zone plasticity (PreScale) in enhancing brain resilience to sleep deprivation through genetic manipulation and advanced imaging techniques.

ERC Advanced...€ 2.242.580
2023
Details

Synaptic resilience in Tau-induced neurodegeneration

This project aims to uncover the mechanisms of synaptic remodeling during hibernation to develop therapies that reverse Tau-induced synaptic decline in dementia.

ERC Advanced...€ 2.500.000
2023
Details

Internal state drivers of behavioral flexibility and their underlying neural circuitry in the zona incerta

CERTASTATES aims to investigate how the zona incerta processes internal state changes to drive adaptive behavior using advanced technologies in mice, with potential implications for therapeutic neuromodulation.

ERC Starting...€ 1.494.634
2025
Details
ERC Starting...

Combinatorial neuromodulation of internal states

This project aims to investigate how combinations of neuromodulators influence neuronal dynamics and circuit configurations in the hippocampus-prefrontal circuit during various behavioral states in mice.

ERC Starting Grant
€ 1.499.563
2025
Details
ERC Consolid...

Window to the brain: a game changer in the discovery of human neuronal circuitry, cellular heterogenicity and biomarker profile indicative of early Alzheimer's disease -related pathology

The project aims to investigate how specific microglial subpopulations impair neuronal functions in early Alzheimer's pathology using unique human brain samples and advanced techniques to identify novel biomarkers.

ERC Consolidator Grant
€ 1.998.389
2022
Details
ERC Advanced...

The synaptic active zone as a signaling hub for sleep homeostasis and resilience

The SynProtect project aims to investigate the role of presynaptic active zone plasticity (PreScale) in enhancing brain resilience to sleep deprivation through genetic manipulation and advanced imaging techniques.

ERC Advanced Grant
€ 2.242.580
2023
Details
ERC Advanced...

Synaptic resilience in Tau-induced neurodegeneration

This project aims to uncover the mechanisms of synaptic remodeling during hibernation to develop therapies that reverse Tau-induced synaptic decline in dementia.

ERC Advanced Grant
€ 2.500.000
2023
Details
ERC Starting...

Internal state drivers of behavioral flexibility and their underlying neural circuitry in the zona incerta

CERTASTATES aims to investigate how the zona incerta processes internal state changes to drive adaptive behavior using advanced technologies in mice, with potential implications for therapeutic neuromodulation.

ERC Starting Grant
€ 1.494.634
2025
Details

SubsidieMeesters logoSubsidieMeesters

Vind en verken subsidieprojecten in Nederland en Europa.

Links

  • Projecten
  • Regelingen
  • Analyses

Suggesties

Heb je ideeën voor nieuwe features of verbeteringen?

Deel je suggestie
© 2025 SubsidieMeesters. Alle rechten voorbehouden.