The Langlands Correspondence

This project explores the Langlands correspondence through Hecke algebras, extends it to rational functions on curves, and seeks a categorification to strengthen its foundational aspects.

Subsidie
€ 1.976.875
2024

Projectdetails

Introduction

R. Langlands conjectured the existence of a correspondence between automorphic spectrums of Hecke algebras and representations of Galois groups of global fields. The existence of such correspondence is one of the main conjectures in mathematics. Even if not known in full generality, it leads to proofs of Fermat and Sato-Tate conjectures.

Project Overview

This project is on three aspects of the Langlands correspondence.

First Aspect

The first part of this project is a description of the spectrum of Hecke algebras on the space generated by pseudo Eisenstein series of cuspidal automorphic forms of Levi subgroups. In the simplest non-trivial case, the precise description is a conjecture of Langlands. This conjecture is proven in my work with A. Okounkov, by an unexpected topological interpretation. I expect this approach to work in a number of other cases.

Second Aspect

The second part of this project is an extension of the Langlands correspondence to a completely new area of fields of rational functions on curves over local fields. This extension of the Langlands correspondence to a new area could lead to new interplays between Representation Theory and Number Theory.

Third Aspect

The third part of the project is on a categorification of the Langlands correspondence necessary for establishing the strong form of this correspondence.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 1.976.875
Totale projectbegroting€ 1.976.875

Tijdlijn

Startdatum1-5-2024
Einddatum30-4-2029
Subsidiejaar2024

Partners & Locaties

Projectpartners

  • THE HEBREW UNIVERSITY OF JERUSALEMpenvoerder

Land(en)

Israel

Vergelijkbare projecten binnen European Research Council

ERC STG

MANUNKIND: Determinants and Dynamics of Collaborative Exploitation

This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.

€ 1.497.749
ERC STG

Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure

The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.

€ 1.498.280
ERC STG

Uncovering the mechanisms of action of an antiviral bacterium

This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.

€ 1.500.000
ERC STG

The Ethics of Loneliness and Sociability

This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.

€ 1.025.860

Vergelijkbare projecten uit andere regelingen

ERC STG

Interplay of structures in conformal and universal random geometry

This project aims to enhance understanding of mathematical physics by exploring connections between statistical mechanics and conformal field theory through algebraic and probabilistic methods.

€ 1.389.728
ERC COG

Relative Langlands Functoriality, Trace Formulas and Harmonic Analysis

The project aims to advance the relative Langlands program by developing local trace formulas and spectral expansions to establish new correspondences in number theory and representation theory.

€ 1.409.559
ERC STG

Motives and the Langlands program

This project aims to develop new tools using motivic sheaves to address the Langlands program for function fields, enhancing the understanding of the relationship between automorphic forms and motives.

€ 1.409.163
ERC STG

Correspondences in enumerative geometry: Hilbert schemes, K3 surfaces and modular forms

The project aims to establish new correspondences in enumerative geometry linking Gromov-Witten and Donaldson-Thomas theories, enhancing understanding of K3 surfaces and modular forms.

€ 1.429.135