Targeting of glycosylation pathways to empower CAR-T therapy of solid tumors.

This project aims to enhance CAR-T cell therapy for solid tumors by engineering glycosylation pathways to improve immune response and long-term persistence against immunosuppressive environments.

Subsidie
€ 2.498.435
2023

Projectdetails

Introduction

Chimeric Antigen Receptor (CAR) T cell therapy uniquely can provide life-long protection against tumor re-emergence upon clearance of even advanced-stage leukemia. However, for the more frequent solid tumor types (carcinomas, lymphomas), clearance of advanced-stage tumors, and especially the subsequent long-term protection, is only rarely achieved.

Challenges in Solid Tumor Treatment

The main reason for this is the multi-pathway immunosuppressive environment that these tumors evolve to overcome the selective pressure imposed by the patient’s immune system. This environment:

  • Hampers the initial attack by CAR-Ts
  • Often leads to low numbers of long-term persisting CAR-T cells
  • Results in CAR-T cells that tend to be in a state of functional exhaustion

Most attempts at overcoming these challenges target particular CAR-T cell proteins involved in individual pathways of immunosuppression. However, it is clear from early-stage clinical trials with such engineered CAR-T cells that multiple pathways will need to be tackled at the same time.

Innovative Approach

Inspired by this challenge, I have chosen a radically different path: we are targeting the CAR-T cell glycocalyx, i.e., the assembly of glycosylated structures that forms the outer layer of the cell.

Unique Properties of Glycosylation

The unique property of glycosylation pathways is that they often modulate a large range of cell surface receptor biology at the same time.

Promising Results

Excitingly, this new research line has now generated the first highly promising results with the discovery of a single CAR-T glycogene inactivation that results in robust clearance of a benchmark highly immunosuppressive carcinoma rechallenge, in mice that were CAR-T cured from their primary tumor months earlier.

Future Directions

Encouraged by these exciting results that demonstrate strong long-term functional persistence of these glyco-engineered CAR-T cells, we have defined a programme to build on this finding and to explore a candidate set of further glycosylation engineering concepts in CAR-T cells, to further improve CAR-T therapy of solid tumors.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 2.498.435
Totale projectbegroting€ 2.498.435

Tijdlijn

Startdatum1-7-2023
Einddatum30-6-2028
Subsidiejaar2023

Partners & Locaties

Projectpartners

  • VIB VZWpenvoerder

Land(en)

Belgium

Vergelijkbare projecten binnen European Research Council

ERC STG

MANUNKIND: Determinants and Dynamics of Collaborative Exploitation

This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.

€ 1.497.749
ERC STG

Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure

The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.

€ 1.498.280
ERC STG

Uncovering the mechanisms of action of an antiviral bacterium

This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.

€ 1.500.000
ERC STG

The Ethics of Loneliness and Sociability

This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.

€ 1.025.860

Vergelijkbare projecten uit andere regelingen

ERC STG

Polyclonal anti-tumor immunity by engineered human T cells

This project aims to enhance adoptive T cell therapies for solid tumors by engineering TCR sensitivity and safety, creating robust, antigen-agnostic immune responses to improve patient outcomes.

€ 1.812.500
ERC POC

Chimeric Antigen Receptor (CAR) T Cell Therapy For Solid Tumors

CAR-T(uning) aims to enhance CAR-T therapy for NSCLC by improving treatment persistence and reducing tumor immunosuppression, paving the way for effective, broadly applicable cancer therapies.

€ 150.000
ERC STG

Engineering CAR-T cells to overcome glycosylation-driven tumour resistance

The project aims to engineer CAR-T cells that express an enzyme to de-glycosylate tumor cells, enhancing their efficacy against solid cancers by overcoming immunosuppressive barriers.

€ 1.500.000
EIC Pathfinder

CAR T cells Rewired to prevent EXhaustion in the tumour microenvironment

CAR T-REX aims to enhance CAR T cell efficacy against solid tumors by integrating auto-regulated genetic circuits to prevent exhaustion, using advanced gene editing and delivery technologies.

€ 2.733.931