Sustainable light-emitting devices through control of dynamic doping
This project aims to develop sustainable light-emitting electrochemical cells (LECs) with efficient emission and minimal resource use by optimizing p-n junction formation and material design.
Projectdetails
Introduction
Artificial illumination is fundamental and ubiquitous in modern society, and the current large-scale commercialization of more efficient and practical technologies, in the form of LEDs and OLEDs, is therefore important. This development is not only resulting in improved luminaires and displays, but also paving the way for a wide range of applications in, e.g., medtech, security, and communication.
Concerns with Current Technologies
However, a growing concern is related to the fabrication of LEDs and OLEDs, which consumes large amounts of critical raw materials (CRMs) and energy. Additionally, their recycling is poorly developed and difficult.
Novel Illumination Technology
A novel illumination technology, the light-emitting electrochemical cell (LEC), is interesting in this context. We and others have recently developed concepts for its material- and energy-efficient and CRM-free printing fabrication and its delivery of efficient emission (although not yet on par with LED/OLED).
The Challenge Ahead
These combined achievements now pave the way for a timely and important challenge: can the LEC become the first emissive technology that is truly sustainable through its entire lifecycle?
Vision for Sustainability
We boldly argue that this vision can turn true if we can take control of the defining LEC feature, viz. the dynamic formation of a p-n junction by electrochemical doping. It was recently shown that current LECs suffer from severe quenching of the excitons (the photon precursors formed in the p-n junction) by too-nearby dopants.
New Insights and Methodologies
We here introduce new insights and methodologies that address this setback through rational design and careful development of new materials. A key task is to tune the mobility of the electronic charge carriers and excitons, through guidelines established by modeling, for the attainment of a sharp p-n junction boundary.
Path to High-Efficiency LECs
We emphasize that our proposed path to high-efficiency LECs does not depend on energy-intense processes or the use of toxic or CRM-based materials.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.500.000 |
Totale projectbegroting | € 2.500.000 |
Tijdlijn
Startdatum | 1-4-2024 |
Einddatum | 31-3-2029 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- UMEA UNIVERSITETpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Inverse Design of Optoelectronic PhosphosulfidesThe IDOL project aims to discover earth-abundant semiconductors with high optoelectronic quality through a hybrid approach of experimental and computational methods, enhancing sustainable energy technologies. | ERC STG | € 2.263.750 | 2023 | Details |
Design Rules for Efficient Photogeneration in Metal OxidesDREAM aims to enhance metal-oxide photoelectrodes for PEC water splitting by optimizing their electronic configurations to achieve near-unity photogeneration yield for efficient green hydrogen production. | ERC STG | € 2.000.000 | 2023 | Details |
Slow excitonics for minimalistic and sustainable photonic and optoelectronic systemsSLOWTONICS aims to revolutionize photonic applications by developing biocompatible, minimalistic organic optoelectronic components for sustainable optical data storage and sensor systems. | ERC COG | € 1.999.264 | 2024 | Details |
Strong-coupling-enhanced nanoparticle array organic light emitting diodeThe project aims to enhance OLED efficiency using plasmonic nanostructures to achieve over 50% quantum efficiency, making them competitive with inorganic LEDs while reducing environmental impact. | EIC Pathfinder | € 2.728.446 | 2023 | Details |
Inverse Design of Optoelectronic Phosphosulfides
The IDOL project aims to discover earth-abundant semiconductors with high optoelectronic quality through a hybrid approach of experimental and computational methods, enhancing sustainable energy technologies.
Design Rules for Efficient Photogeneration in Metal Oxides
DREAM aims to enhance metal-oxide photoelectrodes for PEC water splitting by optimizing their electronic configurations to achieve near-unity photogeneration yield for efficient green hydrogen production.
Slow excitonics for minimalistic and sustainable photonic and optoelectronic systems
SLOWTONICS aims to revolutionize photonic applications by developing biocompatible, minimalistic organic optoelectronic components for sustainable optical data storage and sensor systems.
Strong-coupling-enhanced nanoparticle array organic light emitting diode
The project aims to enhance OLED efficiency using plasmonic nanostructures to achieve over 50% quantum efficiency, making them competitive with inorganic LEDs while reducing environmental impact.