Reducing Iron Oxides without Carbon by using Hydrogen-Plasma
Project ROC aims to revolutionize steelmaking by replacing carbon with hydrogen in a single-step process to reduce CO2 emissions by over 80%, leveraging green electricity and advanced technologies.
Projectdetails
Introduction
With 1.8 billion tons produced per year, steel is the dominant metallic material. It can be recycled by melting scrap, a resource satisfying at most 30% of the demand. Hence, fresh steel must be produced in huge amounts, from oxide minerals reduced by CO in blast furnaces, followed by partial removal of C by O2 in converters.
Environmental Impact
These two processes create ~2.1 tons CO2 per ton of steel, qualifying steelmaking as the largest single greenhouse gas emitter on earth (~8% of all emissions). ROC tackles the fundamental science needed to drastically cut these staggering CO2 numbers, by up to 80% and beyond. This is the biggest single leverage we have to fight global warming.
Disruptive Approach
The disruptive approach of ROC lies in:
- Using H instead of C as reductant
- Merging the multiple steps explained above into a single melting plus reduction process which can run with green electricity, namely, an electric arc furnace operated with a H-containing reducing plasma.
ROC’s approach is feasible as it can be upscaled by modifying existing furnace technology. The motivation is that solid Fe from other synthesis methods, such as direct reduction, must anyway be melted after reduction.
Hybrid Processes
Project ROC also addresses hybrid processes, where partially reduced oxides from direct reduction are fed into a reducing plasma, for high energy and H2 efficiency at fast kinetics and high metallization.
Research Focus
Project ROC explores the physical and chemical foundations of these processes, down to atomistic scales, with a blend of instrumented laboratory furnaces, characterization, simulation, and machine learning. Specific topics include:
- Elementary nucleation
- Transport and transformation mechanisms
- Mixed scrap and ore charging
- Influence of contaminants from feedstock
- Plasma parameters
- C-free electrodes
- Slag metallurgy
- The role of nanostructure
Conclusion
Drastic reduction of CO2 is the biggest challenge of our time, and project ROC explores how steelmaking can contribute to it by cutting its emissions by 80% and more.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.491.836 |
Totale projectbegroting | € 2.491.836 |
Tijdlijn
Startdatum | 1-9-2022 |
Einddatum | 31-8-2027 |
Subsidiejaar | 2022 |
Partners & Locaties
Projectpartners
- MAX-PLANCK-INSTITUT FUR NACHHALTIGEMATERIALIEN GMBHpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Swedish large-scale steel value chain demonstration of Hydrogen Breakthrough Iron-making TechnologyThe HYBRIT project aims to decarbonize the European iron and steel industry by replacing coal with fossil-free hydrogen for steel production, potentially avoiding 14.3 Mt CO2eq emissions annually. | InnovFund LSC | € 143.000.000 | 2022 | Details |
Green H2 and circular bio-coal from biowaste for cost-competitive sustainable SteelH2STEEL aims to transform wet waste into green hydrogen, carbon, and critical raw materials for metallurgy, supporting the EU's net-zero emissions goal through innovative pyrolysis and leaching methods. | EIC Pathfinder | € 2.368.910 | 2022 | Details |
Stable and Clean Iron Power from ICONICIron Power aims to develop a novel low-NOx iron aerosol combustion system, ICONIC, for efficient sustainable energy storage and transport, targeting industrial-scale implementation. | ERC POC | € 150.000 | 2023 | Details |
Iron Fuel Technology™: From PoC to prototypeHet project ontwikkelt een prototype van Iron Fuel Technology™ om de energie-intensieve industrie te verduurzamen met CO2-vrije ijzerbrandstof, wat leidt tot aanzienlijke emissiebesparingen en economische groei. | MIT R&D Samenwerking | € 282.520 | 2022 | Details |
Swedish large-scale steel value chain demonstration of Hydrogen Breakthrough Iron-making Technology
The HYBRIT project aims to decarbonize the European iron and steel industry by replacing coal with fossil-free hydrogen for steel production, potentially avoiding 14.3 Mt CO2eq emissions annually.
Green H2 and circular bio-coal from biowaste for cost-competitive sustainable Steel
H2STEEL aims to transform wet waste into green hydrogen, carbon, and critical raw materials for metallurgy, supporting the EU's net-zero emissions goal through innovative pyrolysis and leaching methods.
Stable and Clean Iron Power from ICONIC
Iron Power aims to develop a novel low-NOx iron aerosol combustion system, ICONIC, for efficient sustainable energy storage and transport, targeting industrial-scale implementation.
Iron Fuel Technology™: From PoC to prototype
Het project ontwikkelt een prototype van Iron Fuel Technology™ om de energie-intensieve industrie te verduurzamen met CO2-vrije ijzerbrandstof, wat leidt tot aanzienlijke emissiebesparingen en economische groei.