Microbiome centered prediction and prevention of recurrent infections

This project aims to develop a microbiome-based predictive model for recurrent UTIs by combining genomics, machine learning, and antibiotic manipulation to minimize future infections and resistance.

Subsidie
€ 2.500.000
2023

Projectdetails

Introduction

Antibiotics are a double-edged sword: they help clear the current infection, yet can also select for resistant pathogens, making future infections harder to treat. While treatment guidelines recognize this ‘collateral damage’, we currently lack strategies to predict how treatments affect future recurrence and resistance at the individual patient level.

Importance of the Issue

This problem is of particular importance in Urinary Tract Infections (UTIs); affecting the majority of women over their lifetime, UTIs can chronically recur despite antimicrobial treatment. Importantly, UTIs are often self-seeded by strains residing in the gut microbiome, suggesting that the gut microbiome may provide means to predict current and future infections and could possibly even be manipulated to minimize infections.

Proposed Approach

Here, we propose an interdisciplinary approach combining high-throughput phenotyping and genomics of same-patient gut-microbiome and UTI samples with machine-learning analysis of clinical records, towards a “look-ahead” treatment strategy for recurrent infections.

Step 1: Strain Detection and Model Development

  1. We will use whole-genome and meta-genome approaches to sensitively detect infecting strains within the patient’s microbiome.
  2. We will develop a gene-based model for the infectivity of strains and thereby for the likely infecting agent and resistance profile of infection.

Step 2: Genetic Linkage Mapping

  1. We will use long-read sequencing to map genetic linkage among resistances in each patient’s microbiome.
  2. This will enable the development of a reinforcement machine-learning model to assign treatments that minimize both the risk of treatment failure and of future resistance.

Step 3: Impact Quantification and Treatment Feasibility

  1. Quantifying in vivo and in vitro the impacts of antibiotic intake on microbiome composition.
  2. We will test the feasibility of prescribing antibiotics that manipulate the microbiome in favor of less infectious strains.

Conclusion

Together, this unique research-to-clinic data-rich approach will establish the basic foundations for a microbiome-based paradigm of look-ahead treatment strategies.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 2.500.000
Totale projectbegroting€ 2.500.000

Tijdlijn

Startdatum1-1-2023
Einddatum31-12-2027
Subsidiejaar2023

Partners & Locaties

Projectpartners

  • TECHNION - ISRAEL INSTITUTE OF TECHNOLOGYpenvoerder

Land(en)

Israel

Vergelijkbare projecten binnen European Research Council

ERC Starting...

Systematic Triangulation of Pathobiont-Host-Interactions

The project aims to identify disease-driving pathobionts linked to genetic risk factors in IBD and CRC using high-throughput technology and machine learning to enhance precision medicine.

€ 1.993.688
ERC Starting...

CoRe Defense: fortifying the resident gut microbiota’s colonization resistance to combat intestinal bacterial infections.

This project aims to develop personalized bacterial consortia to prevent gastrointestinal infections by investigating microbiota's protective role against pathogens.

€ 2.035.888
ERC Advanced...

Antibiotics of the future: are they prone to bacterial resistance?

This project aims to develop a forecasting framework for the long-term effectiveness of new antibiotics by studying bacterial resistance evolution and its implications for future antibiotic design and use.

€ 3.479.716
ERC Proof of...

Microbiome-based diagnostics and therapeutics

This project aims to develop microbiome-based diagnostic and therapeutic products by leveraging multi-omics data to identify predictive bacterial strains for disease onset and progression.

€ 150.000
ERC Synergy ...

Deep learning analysis of imaging and metabolomic data to accelerate antibiotic discovery against antimicrobial resistance

AI4AMR aims to revolutionize antibiotic discovery by using advanced AI and multi-dimensional data analysis to identify novel antibiotics and their mechanisms of action against antimicrobial resistance.

€ 10.968.734

Vergelijkbare projecten uit andere regelingen

Mkb-innovati...

Antibioticum efficïentie testapparaat voor gepersonaliseerde patiëntenzorg

Dit project ontwikkelt een apparaat voor snelle, gepersonaliseerde antibioticabehandeling bij urineweginfecties, ter verbetering van patiëntenzorg.

€ 18.421
Mkb-innovati...

RADAR

RADAR ontwikkelt een platformtechnologie voor snelle en nauwkeurige diagnose van urineweginfecties en antibioticaresistentie.

€ 168.350
Mkb-innovati...

Towards evidence-based antibiotic care

ShanX ontwikkelt een snelle test voor antibiotica-efficiëntie, waardoor artsen binnen 4 uur gerichte behandelingen kunnen voorschrijven.

€ 19.136
EIC Transition

A metagenomic-based precision-medicine tool for personalized diagnosis, prognosis and treatment of oral diseases

PreBiomicsPMT aims to develop an automated precision-medicine test using metagenomics and AI to assess peri-implant plaque microbiomes, enhancing diagnosis and treatment for dental implant patients.

€ 2.461.900
Mkb-innovati...

InnomABs

IPA onderzoekt de haalbaarheid van het ontwikkelen van menselijke eiwitten als alternatief voor antibiotica tegen antimicrobiële resistentie.

€ 14.888