Imidazole propionate and fibrosis in cardiometabolic diseases
IMPACT aims to investigate the role of the microbial metabolite imidazole propionate in promoting fibrosis in heart and liver diseases, potentially leading to new therapeutic strategies.
Projectdetails
Introduction
Fibrosis is a pathological feature caused by excessive extracellular matrix secretion, resulting in scar tissue that causes thickening and loss of tissue mobility, culminating in impaired organ function. It is a common feature of heart failure and non-alcoholic steatohepatitis and an important determinant of morbidity and mortality. However, relatively little is known about the underlying aetiology.
Background
We and others have mapped alterations in the gut microbiota in different cardiometabolic diseases, focusing on the functions performed by the microbiota. IMPACT builds on our work showing that humans with type 2 diabetes have high plasma levels of the microbial metabolite imidazole propionate (ImP) and that ImP impairs insulin signalling through p38gamma.
We also resolved the X-ray crystal structure of urocanate reductase (UrdA), the bacterial enzyme responsible for ImP production. Our recent work showed that ImP is more strongly associated with heart failure and that treatment of mice with ImP promotes both cardiac and liver fibrosis, consistent with studies showing that p38gamma signalling is implicated in fibrosis development.
Objectives
IMPACT will first use state-of-the-art clinical assessments to determine how circulating levels of ImP correlate with fibrosis in heart and liver.
-
Kinetics of ImP Induction: We will explore the kinetics by which ImP induces fibrosis in mice and how this process is associated with immune cell infiltration and disease progression.
-
Mechanistic Understanding: To provide mechanistic understanding, we will perform similar experiments in mice lacking key target signalling components (e.g., p38gamma), combined with single cell sequencing that will guide us in producing tissue-specific knockouts to elucidate the cellular cross-talk.
-
UrdA Inhibitors: We will generate UrdA inhibitors and test their potential to reduce ImP production in isolated bacteria, complex microbial communities, and colonised mice.
Conclusion
Thus, IMPACT has the potential of generating new therapies to diseases with unmet clinical needs.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.482.678 |
Totale projectbegroting | € 2.482.678 |
Tijdlijn
Startdatum | 1-8-2023 |
Einddatum | 31-7-2028 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- GOETEBORGS UNIVERSITETpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Immune-stromal crosstalk in inflammation and fibrosis: Exploiting the spatiotemporal dynamics of the OSM-OSMR axis in inflammatory bowel disease to develop novel antifibrotic therapiesThis project aims to investigate the role of oncostatin-M in immune-stromal interactions driving intestinal fibrosis in IBD, with the goal of identifying biomarkers and potential therapies. | ERC STG | € 1.499.816 | 2023 | Details |
Targeting the Imidazoline I1 receptor as a novel treatment for AtherosclerosisImnovAth aims to develop a novel therapy targeting a microbiota-derived metabolite to enhance atherosclerosis treatment efficacy and advance towards clinical trials and commercialization. | ERC POC | € 150.000 | 2024 | Details |
Molecular Imaging to Guide Repair and Advance Therapy: Targeting the inflammation-fibrosis axis in ischemic heart disease and remote organsMIGRATe aims to optimize imaging-guided, molecular-targeted therapies for improved cardiac repair post-myocardial infarction while assessing inter-organ communication effects. | ERC COG | € 1.933.148 | 2025 | Details |
Inhibitor-Mediated Programming of GlycoformsThe project aims to revolutionize glycan manipulation using Inhibitor-Mediated Programming of Glycoforms (IMProGlyco) to create precision-engineered therapeutic proteins and enhance cellular functions. | EIC Pathfinder | € 2.998.878 | 2025 | Details |
Immune-stromal crosstalk in inflammation and fibrosis: Exploiting the spatiotemporal dynamics of the OSM-OSMR axis in inflammatory bowel disease to develop novel antifibrotic therapies
This project aims to investigate the role of oncostatin-M in immune-stromal interactions driving intestinal fibrosis in IBD, with the goal of identifying biomarkers and potential therapies.
Targeting the Imidazoline I1 receptor as a novel treatment for Atherosclerosis
ImnovAth aims to develop a novel therapy targeting a microbiota-derived metabolite to enhance atherosclerosis treatment efficacy and advance towards clinical trials and commercialization.
Molecular Imaging to Guide Repair and Advance Therapy: Targeting the inflammation-fibrosis axis in ischemic heart disease and remote organs
MIGRATe aims to optimize imaging-guided, molecular-targeted therapies for improved cardiac repair post-myocardial infarction while assessing inter-organ communication effects.
Inhibitor-Mediated Programming of Glycoforms
The project aims to revolutionize glycan manipulation using Inhibitor-Mediated Programming of Glycoforms (IMProGlyco) to create precision-engineered therapeutic proteins and enhance cellular functions.