Exploring Cosmic Dawn with James Webb Space Telescope
This project aims to utilize the James Webb Space Telescope to investigate the timeline and mechanisms of cosmic reionization and the properties of the first galaxies formed after the Big Bang.
Projectdetails
Introduction
The cosmic dark ages - when the Universe was filled with neutral hydrogen that was opaque to ultraviolet light - are thought to have ended around one billion years after the Big Bang, when first light sources produced enough energetic photons to ionize the neutral hydrogen. This phase is referred to as the epoch of reionization and is also the era of the first galaxies' formation.
Research Questions
However, this is also one of the least understood epochs in the Universe's evolution. Key questions include:
- When did it start/end?
- Was it patchy or smooth?
- How did galaxies reionize the Universe (if they did)?
- What are the properties of the earliest galaxies?
Methodology
To answer these questions, this proposal will use deep observations of the largest sample of the most powerful cosmic telescopes that will be observed with the James Webb Space Telescope (JWST) right after its launch.
JWST Capabilities
Compared to all previous facilities, JWST's capabilities are dazzling. Its instruments will provide data beyond those yet seen by any astronomer. However, with high power comes great responsibility. Given its limited lifetime, excellent leadership needs to be established.
Project Leadership
As a key member of the Near-Infrared Imager and Slitless Spectrograph (NIRISS) team with guaranteed time and a member of the Early Release Science program, I am in a unique position to guarantee the success of this project.
Proposal for Relocation
I am proposing to relocate to Europe. JWST's NIRISS instrument is not represented in Europe, and this program will bring immediate and proprietary access to the data.
Objectives
This proposal will:
- Determine the timeline of reionization.
- Identify the exact role first galaxies played in this process by studying their ionized bubbles.
- Determine stellar properties of the earliest galaxies.
Expected Outcomes
With an unprecedented facility, the program will undoubtedly bring many exciting discoveries and allow the first look at the details of the Cosmic Dawn.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.086.250 |
Totale projectbegroting | € 2.086.250 |
Tijdlijn
Startdatum | 1-10-2023 |
Einddatum | 30-9-2028 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- UNIVERZA V LJUBLJANIpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Unveiling the Formation of Massive Galaxies with the James Webb Space TelescopeThis project aims to investigate the quenching of star formation in massive galaxies using JWST observations to identify distinct fast and slow quenching mechanisms across different conditions. | ERC STG | € 1.270.668 | 2023 | Details |
Young galaxies as tracers and agents of cosmic reionizationThis project aims to leverage JWST to identify and analyze early galaxies, assessing their role in reionization and shaping the Universe's structure during its first 3 Gyr. | ERC STG | € 1.498.216 | 2023 | Details |
A new View of Young galaxies with ALMA and JWSTThis project aims to uncover hidden stellar populations and map molecular gas in dusty young galaxies using JWST and ALMA data, enhancing our understanding of early galaxy formation. | ERC COG | € 1.997.345 | 2023 | Details |
JWST Breakthrough in Galaxy Formation: Mass Build-up Efficiency at Cosmic DawnSFEER aims to revolutionize our understanding of early galaxy formation by utilizing JWST to analyze the physical properties of massive galaxies during the Epoch of Reionization. | ERC COG | € 1.979.422 | 2023 | Details |
Unveiling the Formation of Massive Galaxies with the James Webb Space Telescope
This project aims to investigate the quenching of star formation in massive galaxies using JWST observations to identify distinct fast and slow quenching mechanisms across different conditions.
Young galaxies as tracers and agents of cosmic reionization
This project aims to leverage JWST to identify and analyze early galaxies, assessing their role in reionization and shaping the Universe's structure during its first 3 Gyr.
A new View of Young galaxies with ALMA and JWST
This project aims to uncover hidden stellar populations and map molecular gas in dusty young galaxies using JWST and ALMA data, enhancing our understanding of early galaxy formation.
JWST Breakthrough in Galaxy Formation: Mass Build-up Efficiency at Cosmic Dawn
SFEER aims to revolutionize our understanding of early galaxy formation by utilizing JWST to analyze the physical properties of massive galaxies during the Epoch of Reionization.