Exploration of Unknown Environments for Digital Twins

The 'explorer' project aims to automate video data capture and labeling in open worlds to facilitate the creation of semantically rich Digital Twins for complex environments using AI-driven methods.

Subsidie
€ 2.476.718
2023

Projectdetails

Introduction

In the 'explorer' project, we will develop methods for automatically capturing and labelling video data in "open worlds". The ultimate goal is the great facilitation of the creation and maintenance of Digital Twins.

What are Digital Twins?

Digital Twins are virtual 3D copies of complex scenes such as cities, factories, or construction sites. Not just a 3D reconstruction, they should capture the scene's semantics, i.e., the identity of each object, and the scene's dynamics, i.e., how objects move.

Importance of Digital Twins

Because Digital Twins have the potential to be extremely useful for monitoring large complex sites and planning the development of these sites, their forecast market is huge. However, they remain mostly a concept because of important limitations of the current technology.

Our Approach

Our methods will guide autonomous systems such as robotic platforms and UAVs through complex and unknown environments to capture visual data for creating and maintaining Digital Twins. This is extremely challenging as these systems will encounter objects without any prior knowledge about them and will have to collect sufficient data about them.

New Problem Statement

To the best of our knowledge, this active and automatic capture in complex real environments is a new problem. It is, however, very important to solve it as this will relax the need for human expertise and time. Currently, capturing such data is done manually only by researchers and requires a strong understanding of what the learning algorithms require.

Technical Inspiration

To tackle the complexity of this problem, our approach is inspired by techniques from Artificial Intelligence applied to the exploration of extremely large trees. This approach will allow us to bring the perception part and the planning part of the problem together under the same optimization framework, to formalize it and solve it efficiently.

Evaluation

To evaluate our developments, we will create a dataset of annotated video sequences from working sites, which we will share with the community.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 2.476.718
Totale projectbegroting€ 2.476.718

Tijdlijn

Startdatum1-10-2023
Einddatum30-9-2028
Subsidiejaar2023

Partners & Locaties

Projectpartners

  • ECOLE NATIONALE DES PONTS ET CHAUSSEESpenvoerder

Land(en)

France

Vergelijkbare projecten binnen European Research Council

ERC STG

MANUNKIND: Determinants and Dynamics of Collaborative Exploitation

This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.

€ 1.497.749
ERC STG

Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure

The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.

€ 1.498.280
ERC STG

Uncovering the mechanisms of action of an antiviral bacterium

This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.

€ 1.500.000
ERC STG

The Ethics of Loneliness and Sociability

This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.

€ 1.025.860

Vergelijkbare projecten uit andere regelingen

ERC STG

Digital twins for understanding forest disturbances and recovery from space

This project aims to enhance understanding and monitoring of forest disturbances and recovery using advanced 3D models and satellite data across diverse ecosystems, improving carbon stock forecasting.

€ 1.498.859
ERC STG

Omni-Supervised Learning for Dynamic Scene Understanding

This project aims to enhance dynamic scene understanding in autonomous vehicles by developing innovative machine learning models and methods for open-world object recognition from unlabeled video data.

€ 1.500.000
ERC COG

Learning to synthesize interactive 3D models

This project aims to automate the generation of interactive 3D models using deep learning to enhance virtual environments and applications in animation, robotics, and digital entertainment.

€ 2.000.000
ERC STG

REinforcement TWInning SysTems: from collaborative digital twins to model-based reinforcement learning

The Re-Twist project aims to develop a novel Reinforcement Twinning framework that integrates machine learning with engineering to optimize systems like wind turbines and drones for societal benefits.

€ 1.500.000