Configurational Mechanics of Soft Materials: Revolutionising Geometrically Nonlinear Fracture
SoftFrac aims to advance soft fracture mechanics through innovative modeling and algorithms, enhancing the resilience of soft devices in robotics, electronics, and tissue engineering.
Projectdetails
Introduction
SoftFrac will revolutionise geometrically nonlinear fracture mechanics of soft materials (in short soft fracture) by capitalising on configurational mechanics, an unconventional continuum formulation that I helped shape over the past decades. Mastering soft fracture will result in disruptive progress in designing the failure resilience of soft devices, i.e. soft robotics, stretchable electronics, and tissue engineering applications.
Challenges of Soft Materials
Soft materials are challenging since they can display moduli as low as only a few kPa, thus allowing for extremely large deformations. Geometrically linear fracture mechanics is well established; nevertheless, it is not applicable for soft fracture given the over-restrictive assumptions of infinitesimal deformations.
Need for Nonlinear Models
The appropriate geometrically nonlinear, finite deformation counterpart is, however, still in its infancy. By combining innovative data-driven/data-adaptive constitutive modelling with novel configurational-force-driven fracture onset and crack propagation, I will overcome the fundamental obstacles to date preventing significant progress in soft fracture.
Research Threads
I propose three interwoven research threads jointly addressing challenging theoretical, computational, and experimental problems in soft fracture:
- Theoretical Thread: Establishes a new constitutive modelling ansatz for soft in/elastic materials and develops the transformational configurational fracture approach.
- Computational Thread: Provides the associated novel algorithmic setting and delivers high-fidelity discretisation schemes to numerically follow crack propagation driven by accurately determined configurational forces.
- Experimental Thread: Generates and analyses comprehensive experimental data of soft materials and their geometrically nonlinear fracture for properly calibrating and validating the theoretical and computational developments.
Conclusion
Ultimately, SoftFrac, for the first time, opens up new horizons for holistically exploring the nascent field of soft fracture.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.494.538 |
Totale projectbegroting | € 2.494.538 |
Tijdlijn
Startdatum | 1-1-2023 |
Einddatum | 31-12-2027 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- FRIEDRICH-ALEXANDER-UNIVERSITAET ERLANGEN-NUERNBERGpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Solving the multi-scale problem in materials mechanics: a pathway to chemical designDevelop a groundbreaking computational framework to predict the viscoelastic and plastic behavior of complex materials across various deformation rates, overcoming current simulation limitations. | ERC COG | € 952.785 | 2022 | Details |
Hard work, plastic flow: a data-centric approach to dislocation-based plasticityThis project aims to bridge the gap between individual and collective dislocation behavior in metals by utilizing data-driven analysis of dislocation trajectories to develop novel plasticity models. | ERC STG | € 1.498.839 | 2024 | Details |
Dynamic control of Gaussian morphing structures via embedded fluidic networksThe project aims to create fully controllable shape-morphing materials using hybrid elastic plates with fluid-filled cavities, enabling precise programming of shape, mechanics, and deformation dynamics for biomedical applications. | ERC STG | € 1.499.601 | 2025 | Details |
Wide-ranging Probabilistic Physics-guided Machine Learning Approach to Break Down the Limits of Current Fatigue Predictive Tools for MetalsBREAKDOWN aims to revolutionize engineering design by integrating micro-scale material inhomogeneities into a probabilistic framework to enhance fatigue understanding and sustainability in structural applications. | ERC STG | € 1.499.954 | 2024 | Details |
Solving the multi-scale problem in materials mechanics: a pathway to chemical design
Develop a groundbreaking computational framework to predict the viscoelastic and plastic behavior of complex materials across various deformation rates, overcoming current simulation limitations.
Hard work, plastic flow: a data-centric approach to dislocation-based plasticity
This project aims to bridge the gap between individual and collective dislocation behavior in metals by utilizing data-driven analysis of dislocation trajectories to develop novel plasticity models.
Dynamic control of Gaussian morphing structures via embedded fluidic networks
The project aims to create fully controllable shape-morphing materials using hybrid elastic plates with fluid-filled cavities, enabling precise programming of shape, mechanics, and deformation dynamics for biomedical applications.
Wide-ranging Probabilistic Physics-guided Machine Learning Approach to Break Down the Limits of Current Fatigue Predictive Tools for Metals
BREAKDOWN aims to revolutionize engineering design by integrating micro-scale material inhomogeneities into a probabilistic framework to enhance fatigue understanding and sustainability in structural applications.