Computational Microscopy of Cells
The project aims to develop advanced computational microscopy methods to simulate and study cell membranes and organelles in their natural cellular environment at molecular resolution.
Projectdetails
Introduction
As an integral part of cell architecture, cell membranes are central to cell functioning. Comprising a heterogeneous mixture of proteins and lipids, cell membranes are constantly adapting their structural organization to regulate cellular processes.
Importance of Study
Malfunction at the level of lipid-protein interaction is implicated in numerous diseases, and hence, understanding cell membrane organization at the molecular level is of critical importance. Unfortunately, our current understanding is limited, which is due to the lack of methods for studying these fluctuating nanoscale assemblies in vivo at the required spatiotemporal resolution.
Computational Microscopy
An important tool for studying cellular processes is through molecular simulation, denoted computational microscopy. Computational microscopy has been used to study small membrane patches in isolation, but until now, cell membranes have not been simulated in their natural context.
Project Objectives
I intend to apply computational microscopy at the whole-cell level to study complex membrane structures and their function within the cellular environment. This requires challenging methodological innovations at the crossroads of biology, life sciences, physics, and chemistry.
Methodology
In this project, I will use advanced computational microscopy to study the interplay of membranes with their surroundings in a realistic cellular environment. The main goal is to establish a framework for the simulation, at molecular resolution, of entire cells and cell organelles.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.498.148 |
Totale projectbegroting | € 2.498.148 |
Tijdlijn
Startdatum | 1-9-2022 |
Einddatum | 31-8-2027 |
Subsidiejaar | 2022 |
Partners & Locaties
Projectpartners
- RIJKSUNIVERSITEIT GRONINGENpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Integrated simulations of active emulsions in complex environmentsEmulSim aims to develop an integrated simulation framework to understand biomolecular condensate dynamics in cells, enhancing insights for potential medical therapies. | ERC COG | € 1.998.334 | 2022 | Details |
Time-resolved imaging of membrane transporter dynamics under physiological ionic gradientsThe project aims to develop a microfluidic platform for high-resolution, time-resolved structural studies of membrane proteins under physiological conditions to enhance drug targeting and understanding of cellular functions. | ERC SyG | € 11.178.784 | 2024 | Details |
Deciphering the role of surface mechanics during cell divisionMitoMeChAnics aims to uncover how cell surface mechanics regulate division by using novel molecular tools and interdisciplinary methods to link structure and function at the cellular level. | ERC COG | € 2.200.287 | 2024 | Details |
Membrane Micro-CompartmentsThe project aims to develop a system for in situ structural analysis of membrane proteins to enhance drug interaction studies and facilitate their commercialization in the pharmaceutical industry. | ERC POC | € 150.000 | 2024 | Details |
Integrated simulations of active emulsions in complex environments
EmulSim aims to develop an integrated simulation framework to understand biomolecular condensate dynamics in cells, enhancing insights for potential medical therapies.
Time-resolved imaging of membrane transporter dynamics under physiological ionic gradients
The project aims to develop a microfluidic platform for high-resolution, time-resolved structural studies of membrane proteins under physiological conditions to enhance drug targeting and understanding of cellular functions.
Deciphering the role of surface mechanics during cell division
MitoMeChAnics aims to uncover how cell surface mechanics regulate division by using novel molecular tools and interdisciplinary methods to link structure and function at the cellular level.
Membrane Micro-Compartments
The project aims to develop a system for in situ structural analysis of membrane proteins to enhance drug interaction studies and facilitate their commercialization in the pharmaceutical industry.