Brain fluids - Transport and clearance
The "aCleanBrain" project aims to uncover brain fluid dynamics mechanisms and develop advanced simulation algorithms using machine learning for better understanding of neurodegenerative diseases.
Projectdetails
Introduction
Scientific breakthroughs in neuroscience explain the need for sleep and the development of neurodegenerative diseases such as Alzheimer's and Parkinson's diseases in terms of fluid dynamics: the waste created during the day is cleared away as we sleep or it accumulates.
Research Background
However, a decade of research after the original theory was posed has revealed that the underlying physical mechanisms are still not understood and that advanced mathematical tools are needed.
Project Proposal
In this project, we propose a research program addressing:
- New fluid dynamics mechanisms
- Novel numerical analysis for advanced multi-physics brain simulations
- A framework for patient-specific simulations
We will exploit reduced order and machine learning methods in addition to finite element solutions.
Expected Outcomes
With successful delivery, the "aCleanBrain" will:
- Establish the main drivers of brain fluid dynamics
- Provide a foundation for accurate, efficient, and robust algorithms for multi-physics problems
- Develop a software framework for advanced biomechanical brain simulations
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.493.750 |
Totale projectbegroting | € 2.493.750 |
Tijdlijn
Startdatum | 1-8-2024 |
Einddatum | 31-7-2029 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- SIMULA RESEARCH LABORATORY ASpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Toward an understanding of the brain interstitial system and the extracellular proteome in health and autism spectrum disordersThis project aims to investigate the role of extracellular proteins in brain development and autism spectrum disorders using advanced techniques to identify and analyze their effects. | ERC COG | € 1.997.729 | 2022 | Details |
Remote whole-brain functional microscopy of the vascular system: a paradigm shift for the monitoring and treatment of small vessel diseasesThe project aims to revolutionize neuroimaging by developing functional Ultrasound Localization Microscopy (fULM) for high-resolution monitoring of brain vasculature and function, enhancing disease diagnosis and treatment evaluation. | EIC Pathfinder | € 3.946.172 | 2022 | Details |
Bidirectional Brain/Neural-Computer Interaction for Restoration of Mental HealthThis project aims to develop a portable neuromodulation system using quantum sensors and magnetic stimulation to precisely target brain oscillations for treating mental health disorders. | ERC COG | € 1.999.875 | 2025 | Details |
4D Brain-Targeting Nanomedicines for Treating NeurodegenerationThis project aims to develop advanced 4D-brain-targeting nanoparticles using nanotechnology to effectively deliver treatments for neurodegenerative diseases across the blood-brain barrier. | ERC COG | € 2.000.000 | 2023 | Details |
Toward an understanding of the brain interstitial system and the extracellular proteome in health and autism spectrum disorders
This project aims to investigate the role of extracellular proteins in brain development and autism spectrum disorders using advanced techniques to identify and analyze their effects.
Remote whole-brain functional microscopy of the vascular system: a paradigm shift for the monitoring and treatment of small vessel diseases
The project aims to revolutionize neuroimaging by developing functional Ultrasound Localization Microscopy (fULM) for high-resolution monitoring of brain vasculature and function, enhancing disease diagnosis and treatment evaluation.
Bidirectional Brain/Neural-Computer Interaction for Restoration of Mental Health
This project aims to develop a portable neuromodulation system using quantum sensors and magnetic stimulation to precisely target brain oscillations for treating mental health disorders.
4D Brain-Targeting Nanomedicines for Treating Neurodegeneration
This project aims to develop advanced 4D-brain-targeting nanoparticles using nanotechnology to effectively deliver treatments for neurodegenerative diseases across the blood-brain barrier.