A novel and empowered TARGETed gene addition approach at a relevant microglia locus for the treatment of inherited NeuroMetabolic Diseases

Develop a targeted gene addition approach at a microglia locus in HSCs to safely and effectively treat inherited neurometabolic diseases by enhancing timely microglia-like cell engraftment.

Subsidie
€ 2.495.250
2022

Projectdetails

Introduction

Hematopoietic stem cell (HSC) gene therapy based on self-inactivating integrating vectors has proven unprecedented therapeutic potential in inherited neurometabolic diseases (NMDs). However, phenotypic effects are delayed after treatment, likely due to the slow replacement of resident microglia by transplant-derived cells, which hampers the broad application of this approach.

Safety Concerns

Moreover, unregulated gene expression driven by the in-use promoters could, in the long term, cause unwanted effects. Recent events suggest that treated patients might be at risk of developing side effects related to vector integration. Therefore, novel strategies anticipating therapeutic benefit and reducing these potential safety concerns are desirable to address the still unmet medical need of NMD patients.

Long-term Goal

Our long-term goal is to develop a novel, broadly effective, and safe treatment platform for NMDs based on a newly empowered HSC targeted gene addition approach at a newly identified microglia locus.

Central Hypothesis

Our central hypothesis is that correcting the gene defect by targeted addition at this locus in HSCs of patients affected by NMDs could generate, in a timely manner, a microglia-like progeny endowed with unprecedented therapeutic potential.

Expected Outcomes

Indeed, based on our recent findings, gene editing and targeted integration at this locus are expected to:

  1. Uniquely favor the timely engraftment and efficient, rapid myeloid/microglia differentiation of transplanted, edited HSCs in the recipients’ brain.
  2. Induce robust and regulated expression of the integrated transcript in transplant-derived microglia-like cells.

Proposed Work

Based on this hypothesis, we aim at developing a targeted gene addition approach at the newly selected microglia locus for correcting the underlying genetic defect in HSCs and obtaining proof of concept of its therapeutic potential in NMDs animal models. Thus, the proposed work could generate the basis for a novel treatment platform for these devastating conditions.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 2.495.250
Totale projectbegroting€ 2.495.250

Tijdlijn

Startdatum1-10-2022
Einddatum30-9-2027
Subsidiejaar2022

Partners & Locaties

Projectpartners

  • UNIVERSITA DEGLI STUDI DI PADOVApenvoerder

Land(en)

Italy

Vergelijkbare projecten binnen European Research Council

ERC STG

MANUNKIND: Determinants and Dynamics of Collaborative Exploitation

This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.

€ 1.497.749
ERC STG

Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure

The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.

€ 1.498.280
ERC STG

Uncovering the mechanisms of action of an antiviral bacterium

This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.

€ 1.500.000
ERC STG

The Ethics of Loneliness and Sociability

This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.

€ 1.025.860

Vergelijkbare projecten uit andere regelingen

ERC COG

In Vivo CRISPR-Based Nanoplatform for Gene Editing: A New Disruptive Avenue for Non-Invasive Treatment of Genetic Brain Diseases

This project aims to develop a novel nanoplatform for the safe and efficient delivery of CRISPR gene editing technology to treat genetic brain diseases non-invasively.

€ 2.249.895
ERC STG

Prime editing to Repair Inherited Metabolic Errors: in vivo gene correction for human genetic disease

Develop an in vivo prime editing therapy for methylmalonic acidemia to correct genetic mutations in the liver, aiming for safe, efficient, and personalized treatments before irreversible damage occurs.

€ 1.499.968
EIC Pathfinder

Exploiting ex vivo expansion and deep multiomics profiling to bring novel, efficient and safer hematopoietic stem cell gene therapies to clinical application

This project aims to innovate hematopoietic stem cell identification and engineering through advanced culture techniques and multiomics profiling, enhancing gene therapy for blood disorders and cancer.

€ 3.797.562
EIC Pathfinder

NOn-VIral gene modified STEM cell therapy

This project aims to develop a high-throughput protocol for producing gene-corrected CAR T cells and blood stem cells using optimized photoporation and CRISPR technology for enhanced clinical application.

€ 3.644.418