Self HealINg soft materials for susTainable prOducts

The SHINTO project aims to revolutionize soft robotics with self-healing components, enhancing reliability and sustainability while targeting commercial viability and market expansion.

Subsidie
€ 2.488.500
2022

Projectdetails

Introduction

The SHINTO project aims to disrupt the soft robotics market by creating a new market for self-healing structural components, introducing autonomous damage detection and healing in intelligent soft robots.

Current Market Landscape

The current field is driven by a high adoption of soft grippers that ensure safe operation for collaborative robots in manufacturing and delicate manipulation in agrifood and warehousing. However, these expensive and mostly non-recyclable soft robots have limited lifetimes due to their vulnerability to damage.

Technological Innovations

In symbiosis, VUB-research groups FYSC and Brubotics have been building soft robots out of self-healing materials that fully recover functional material properties and resulting performances after healing incurred damage. This extends the robots' service lifetime and raises their reliability and sustainability, which in combination with their inherent recyclability contributes to economic benefits and the EU Green Deal.

Project Goals

In SHINTO, technological breakthroughs will mature beyond lab demonstrators over pilot scale towards commercial viability through synergistic advances in:

  1. (Patented) self-healing polymers
  2. Manufacturing
  3. Application validation
  4. Business development

Team Composition

The team combines profound knowledge of materials and robotics scientists with business experts to establish a new deep tech company, marketing next-generation self-healing grippers as semi-finished goods.

Market Strategy

The beach-head strategy targets existing soft robotics markets based on confirmed product-market fits. Existing feedback loops with key industrial partners, field tests, and life cycle assessment allow for co-creating the required quality and Technology Readiness Level (TRL) for business transition while limiting business risk to a niche market.

Continuous Market Analysis

Parallel, continuous market analysis enables updating/expanding requirements and extending to broader (non-)robotic markets. The soft robotics market is expected to grow at 40% per year to $6.3 billion by 2027, while market fits beyond this niche are identified, e.g., the tire market at $174 billion in 2028.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 2.488.500
Totale projectbegroting€ 2.488.500

Tijdlijn

Startdatum1-10-2022
Einddatum30-9-2025
Subsidiejaar2022

Partners & Locaties

Projectpartners

  • VRIJE UNIVERSITEIT BRUSSELpenvoerder

Land(en)

Belgium

Vergelijkbare projecten binnen EIC Transition

EIC Transition

Smart Implant for Magnetic Anastomotic Healing and Leakage Evaluation

The SMARTHEAL project aims to develop a smart magnetic anastomosis implant with integrated micro-sensors for enhanced healing and early detection of leaks, improving surgical outcomes and reducing costs.

€ 2.499.815

Vergelijkbare projecten uit andere regelingen

EIC Pathfinder

Minimally-Invasive Soft-Robot-Assisted Deep-Brain Localized Therapeutics Delivery for Neurological Disorders

SoftReach aims to revolutionize neurological disorder treatments through a novel soft-growing robotic platform for localized therapeutic delivery using real-time MRI guidance.

€ 2.158.000
ERC Starting...

Textile-Based Wearable Soft Robotics with Integrated Sensing, Actuating and Self Powering Properties

TEXWEAROTS aims to develop a lightweight, knitted soft robotic glove with integrated actuation and sensing for enhanced mobility and reliability in rehabilitation and daily assistance.

€ 1.479.262
Mkb-innovati...

Data gedreven schadeanalyse voor de voorspelling van zakelijke elektronica reparaties

Het project onderzoekt de haalbaarheid van een deep learning model voor efficiënte reparaties van zakelijke elektronica binnen Afterservice.

€ 20.000
Mkb-innovati...

Data gedreven schadeanalyse voor de voorspelling van zakelijke elektronica reparaties

Het project onderzoekt de haalbaarheid van een deep learning model voor het optimaliseren van elektronicareparaties binnen het Afterservice platform, met als doel kosten en doorlooptijden te verlagen.

€ 20.000
Mkb-innovati...

De optimalisatietool voor machinereparaties

Blue Squid ontwikkelt de SmartFix-app om machinereparaties in de agri- en food-processing sector te optimaliseren met AI en AR, gericht op efficiëntie en kostenbesparing, en onderzoekt de haalbaarheid van uitrol.

€ 19.200