Reaction robot with intimate photocatalytic and separation functions in a 3-D network driven by artificial intelligence
CATART aims to develop autonomous reaction robots using AI and 3-D quantum dot networks to efficiently mimic natural chemical production, enhancing productivity and sustainability in the chemical industry.
Projectdetails
Introduction
Mimicking the chemical production of nature is a well-pursued dream in the scientific community. Scientific progress is limited by the lack of efficient synergies among complex functions and by a much smaller research library than nature.
Project Overview
CATART will explore new synergies in reaction robots that mimic nature in a much faster way. This will be achieved using H2O and CO2 as model substrates.
Proposed Systems
We propose systems containing:
- 3-D quantum dot networks with the ability to simultaneously:
- Harvest sunlight by luminescence
- Photo-catalyze substrates
- Separate products
These phenomena will be managed by artificial intelligence, leading to reaction robots that autonomously learn and instantly maximize productivity.
Impact
The envisioned system will revolutionize the way chemicals are produced. The combination of expertise in:
- Photonics
- Machine learning
- Catalysis
- Organic chemistry
- Engineering
from 5 academic institutions, 1 research center, 1 SME, and 1 industrial partner will enable a successful pathway into feasible reaction robots.
Conclusion
CATART will contribute to a game-changing chemical technology, placing EU industry and society in a privileged situation to face future economic and environmental constraints.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.871.775 |
Totale projectbegroting | € 2.871.775 |
Tijdlijn
Startdatum | 1-9-2022 |
Einddatum | 31-8-2026 |
Subsidiejaar | 2022 |
Partners & Locaties
Projectpartners
- UNIVERSIDAD DEL PAIS VASCO/ EUSKAL HERRIKO UNIBERTSITATEApenvoerder
- TECHNISCHE UNIVERSITEIT EINDHOVEN
- UNIVERSITA DEGLI STUDI DI PAVIA
- UNIVERSITEIT VAN AMSTERDAM
- MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
- KEMIJSKI INSTITUT
- UNIVERSITY OF GLASGOW
- CHEMIFY LIMITED
- JOHNSON MATTHEY PLC
Land(en)
Vergelijkbare projecten binnen EIC Pathfinder
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
"Creation of innovative ""humidity to electricity"" renewable energy conversion technology towards sustainable energy challenge"The CATCHER project aims to develop scalable technology for converting atmospheric humidity into renewable electricity, enhancing EU leadership in clean energy innovation. | EIC Pathfinder | € 2.996.550 | 2022 | Details |
Quantitative Ultrasound Stochastic Tomography - Revolutionizing breast cancer diagnosis and screening with supercomputing-based radiation-free imaging.The project aims to revolutionize breast cancer imaging by developing adjoint-based algorithms for uncertainty quantification, enhancing diagnostic confidence through high-resolution, radiation-free images. | EIC Pathfinder | € 2.744.300 | 2022 | Details |
Dynamic Spatio-Temporal Modulation of Light by Phononic ArchitecturesDynamo aims to revolutionize imaging technologies by enabling simultaneous light modulation at GHz rates, enhancing processing speed and positioning Europe as a leader in optical advancements. | EIC Pathfinder | € 2.552.277 | 2022 | Details |
Emerging technologies for crystal-based gamma-ray light sourcesTECHNO-CLS aims to develop novel gamma-ray light sources using oriented crystals and high-energy particle beams, enhancing applications in various scientific fields through innovative technology. | EIC Pathfinder | € 2.643.187 | 2022 | Details |
"Creation of innovative ""humidity to electricity"" renewable energy conversion technology towards sustainable energy challenge"
The CATCHER project aims to develop scalable technology for converting atmospheric humidity into renewable electricity, enhancing EU leadership in clean energy innovation.
Quantitative Ultrasound Stochastic Tomography - Revolutionizing breast cancer diagnosis and screening with supercomputing-based radiation-free imaging.
The project aims to revolutionize breast cancer imaging by developing adjoint-based algorithms for uncertainty quantification, enhancing diagnostic confidence through high-resolution, radiation-free images.
Dynamic Spatio-Temporal Modulation of Light by Phononic Architectures
Dynamo aims to revolutionize imaging technologies by enabling simultaneous light modulation at GHz rates, enhancing processing speed and positioning Europe as a leader in optical advancements.
Emerging technologies for crystal-based gamma-ray light sources
TECHNO-CLS aims to develop novel gamma-ray light sources using oriented crystals and high-energy particle beams, enhancing applications in various scientific fields through innovative technology.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Synthetic Bimodal Photoredox Catalysis: Unlocking New Sustainable Light-Driven ReactivitySYNPHOCAT aims to develop novel bimodal organic photocatalysts for sustainable light-driven transformations of biorelevant molecules through rational design and mechanistic analysis. | ERC STG | € 1.920.260 | 2022 | Details |
Energy Transfer Catalysis: A Highway to Molecular ComplexityHighEnT aims to innovate synthetic methodologies using visible light-mediated EnT catalysis to create complex organic molecules for pharmacological applications, enhancing chemical space and reaction design. | ERC ADG | € 2.499.250 | 2023 | Details |
A multiscale Machine Learning based Software for the Simulation of Catalytic ProcessesMultiCAT is a machine learning-based framework that enhances catalytic process modeling by reducing computational costs while improving prediction reliability for sustainable chemical manufacturing. | ERC POC | € 150.000 | 2023 | Details |
Enhancing the Potential of Enzymatic Catalysis with LightPHOTOZYME aims to integrate photocatalysis, biocatalysis, and organocatalysis to sustainably produce chiral molecules through innovative photoenzymes and radical reactions. | ERC ADG | € 2.945.000 | 2024 | Details |
Synthetic Bimodal Photoredox Catalysis: Unlocking New Sustainable Light-Driven Reactivity
SYNPHOCAT aims to develop novel bimodal organic photocatalysts for sustainable light-driven transformations of biorelevant molecules through rational design and mechanistic analysis.
Energy Transfer Catalysis: A Highway to Molecular Complexity
HighEnT aims to innovate synthetic methodologies using visible light-mediated EnT catalysis to create complex organic molecules for pharmacological applications, enhancing chemical space and reaction design.
A multiscale Machine Learning based Software for the Simulation of Catalytic Processes
MultiCAT is a machine learning-based framework that enhances catalytic process modeling by reducing computational costs while improving prediction reliability for sustainable chemical manufacturing.
Enhancing the Potential of Enzymatic Catalysis with Light
PHOTOZYME aims to integrate photocatalysis, biocatalysis, and organocatalysis to sustainably produce chiral molecules through innovative photoenzymes and radical reactions.