Computational design, fabrication and engineering methods for unconstrained, highly resource efficient, point-supported timber slabs in multi-storey buildings

The project develops innovative timber slab systems for multi-storey buildings, aiming to replace concrete with sustainable, adaptable, and efficient construction methods.

Subsidie
€ 2.603.887
2024

Projectdetails

Introduction

The project aims to develop novel design, engineering, and fabrication methods for point-supported timber slab structures in multi-storey buildings. It aims to provide the fundamental technologies for a sustainable alternative building system that could broadly replace point-supported reinforced concrete slabs, especially in urban building projects.

Objectives

The project aims to develop a universally applicable, suppliable, usable, and affordable alternative building system and make timber construction broadly available. It is based on a building system concept, in which a complex arrangement of wood lamellas provides the potential for high structural performance.

Key Areas of Focus

Questions of design computation, structural engineering, simulation methods, and mechanical testing of this system will be addressed in the project. Provided the complexity of the material makeup and potentially long computing times, surrogate modelling methods will be developed based on disciplinary modelling methods. These allow fast computation of various design options.

Intelligent Decision Support System

An AI-based Intelligent Decision Support System will integrate all surrogate models and provide informative design feedback of the universal timber slab system throughout all design stages.

Applicability and Flexibility

The building system will be applicable to multidirectional, long-span slabs and enable computationally derived geometric adaptivity to typical building project boundary conditions, such as:

  1. Site
  2. Program
  3. Design intent

The possibility for free and sparse column layouts allows for higher design flexibility and the design of mixed-use urban platforms with great potential for long-term reusability.

Sustainability Impact

The system leverages computational design and construction to build bespoke, highly material-efficient, and digitally scalable building structures from wood. Hence, it provides high potential to sustainably and broadly disrupt predominant, energy- and carbon-intensive reinforced concrete slabs in building construction.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 2.603.887
Totale projectbegroting€ 2.603.887

Tijdlijn

Startdatum1-10-2024
Einddatum30-9-2027
Subsidiejaar2024

Partners & Locaties

Projectpartners

  • UNIVERSITY OF STUTTGARTpenvoerder

Land(en)

Germany

Vergelijkbare projecten binnen EIC Pathfinder

EIC Pathfinder

"Creation of innovative ""humidity to electricity"" renewable energy conversion technology towards sustainable energy challenge"

The CATCHER project aims to develop scalable technology for converting atmospheric humidity into renewable electricity, enhancing EU leadership in clean energy innovation.

€ 2.996.550
EIC Pathfinder

Quantitative Ultrasound Stochastic Tomography - Revolutionizing breast cancer diagnosis and screening with supercomputing-based radiation-free imaging.

The project aims to revolutionize breast cancer imaging by developing adjoint-based algorithms for uncertainty quantification, enhancing diagnostic confidence through high-resolution, radiation-free images.

€ 2.744.300
EIC Pathfinder

Dynamic Spatio-Temporal Modulation of Light by Phononic Architectures

Dynamo aims to revolutionize imaging technologies by enabling simultaneous light modulation at GHz rates, enhancing processing speed and positioning Europe as a leader in optical advancements.

€ 2.552.277
EIC Pathfinder

Emerging technologies for crystal-based gamma-ray light sources

TECHNO-CLS aims to develop novel gamma-ray light sources using oriented crystals and high-energy particle beams, enhancing applications in various scientific fields through innovative technology.

€ 2.643.187

Vergelijkbare projecten uit andere regelingen

MIT Haalbaarheid

Afvalloos oneindig hout produceren

Het project onderzoekt de haalbaarheid van het hergebruik van resthout voor het produceren van duurzame, sterke balken met minimale afval en milieuvriendelijke lijmen.

€ 20.000
MIT Haalbaarheid

Onderzoek haalbaarheid van compleet circulaire houtskeletbouw in woningbouw

Bativo onderzoekt de haalbaarheid van een geautomatiseerde circulaire houtverwerkingslijn voor houtskeletbouw en staalframeconstructies, met focus op houtbesparing en CO2-vrije productie.

€ 20.000
MIT R&D Samenwerking

Hightech Woningbouw - Geautomatiseerde digitale productielijn voor houtskeletbouw (HSB)

Het project ontwikkelt een geautomatiseerde productielijn voor prefab houtskeletbouw om het woningtekort te verhelpen, stikstofuitstoot te verminderen en bouwkosten te verlagen.

€ 293.125
MIT Haalbaarheid

TIMBERTOWER

TIMBERTOWER ontwikkelt een innovatieve, modulaire houten windturbine toren met gebogen CLT-elementen, gericht op efficiënter materiaalgebruik en lagere CO2-uitstoot door digitale ontwerp- en productiemethoden.

€ 20.000