Bimodal Ammonia Nuclear Thermal and Electric Rocket
BANTER aims to develop a compact bimodal nuclear thermal and electric propulsion system using ammonia, enhancing space mission capabilities and advancing green hydrogen production.
Projectdetails
Introduction
BANTER represents the first step towards realizing an innovative bimodal nuclear thermal and electric propulsion system in which the same fluid (i.e. ammonia) is used as a propellant for thermo-nuclear propulsion and electric thrusters and as a working fluid for the power generation system.
Advantages of Ammonia
Due to its ease of storage in non-cryogenic conditions, its presence as an in-situ resource on many targets of future space missions, and its possibility of decomposing to increase the propulsive performance, ammonia allows the development of a compact propulsion system capable of transporting tons of payloads for a wide spectrum of missions.
Phase One: Design and Verification
The design and verification through analysis of a nuclear reactor implementing a new type of coolant channels and a radiator-less power generation system fed by ammonia will constitute the first phase of this process.
Experimental Campaigns
Then, the combination of the thermolysis, catalysis, and radiolysis processes to decompose the ammonia will be studied through two experimental campaigns carried out on prototypes of the coolant channels both in a nuclear and non-nuclear environment with the aim of demonstrating propulsive performance capable of outclassing traditional chemical propulsion systems.
Phase Two: Electric Thrusters
Moreover, another phase of design, development, and testing will demonstrate the ability of a cluster of newly designed ammonia electric thrusters to operate for long periods without excessive cathode erosion, eventually with increased efficiency due to the catalytic decomposition of the propellant.
Impact and Multidisciplinarity
Positive outcomes of the project will pave the way for developing a technology that could make Europe a protagonist of the future space race thanks to a compact, versatile, and high-performance propulsion system. In addition, any improvement in the production of green hydrogen from ammonia decomposition will benefit the energy industry. This aspect makes this project highly multidisciplinary not only in the research approach but also in the results.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.997.300 |
Totale projectbegroting | € 2.997.300 |
Tijdlijn
Startdatum | 1-2-2025 |
Einddatum | 31-1-2029 |
Subsidiejaar | 2025 |
Partners & Locaties
Projectpartners
- UNIVERSITA DI PISApenvoerder
- UNIVERSITY OF STUTTGART
- CENTRUM VYZKUMU REZ SRO
- NOVASPACE SAS
Land(en)
Vergelijkbare projecten binnen EIC Pathfinder
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
"Creation of innovative ""humidity to electricity"" renewable energy conversion technology towards sustainable energy challenge"The CATCHER project aims to develop scalable technology for converting atmospheric humidity into renewable electricity, enhancing EU leadership in clean energy innovation. | EIC Pathfinder | € 2.996.550 | 2022 | Details |
Quantitative Ultrasound Stochastic Tomography - Revolutionizing breast cancer diagnosis and screening with supercomputing-based radiation-free imaging.The project aims to revolutionize breast cancer imaging by developing adjoint-based algorithms for uncertainty quantification, enhancing diagnostic confidence through high-resolution, radiation-free images. | EIC Pathfinder | € 2.744.300 | 2022 | Details |
Dynamic Spatio-Temporal Modulation of Light by Phononic ArchitecturesDynamo aims to revolutionize imaging technologies by enabling simultaneous light modulation at GHz rates, enhancing processing speed and positioning Europe as a leader in optical advancements. | EIC Pathfinder | € 2.552.277 | 2022 | Details |
Emerging technologies for crystal-based gamma-ray light sourcesTECHNO-CLS aims to develop novel gamma-ray light sources using oriented crystals and high-energy particle beams, enhancing applications in various scientific fields through innovative technology. | EIC Pathfinder | € 2.643.187 | 2022 | Details |
"Creation of innovative ""humidity to electricity"" renewable energy conversion technology towards sustainable energy challenge"
The CATCHER project aims to develop scalable technology for converting atmospheric humidity into renewable electricity, enhancing EU leadership in clean energy innovation.
Quantitative Ultrasound Stochastic Tomography - Revolutionizing breast cancer diagnosis and screening with supercomputing-based radiation-free imaging.
The project aims to revolutionize breast cancer imaging by developing adjoint-based algorithms for uncertainty quantification, enhancing diagnostic confidence through high-resolution, radiation-free images.
Dynamic Spatio-Temporal Modulation of Light by Phononic Architectures
Dynamo aims to revolutionize imaging technologies by enabling simultaneous light modulation at GHz rates, enhancing processing speed and positioning Europe as a leader in optical advancements.
Emerging technologies for crystal-based gamma-ray light sources
TECHNO-CLS aims to develop novel gamma-ray light sources using oriented crystals and high-energy particle beams, enhancing applications in various scientific fields through innovative technology.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Plasma Reactors for Efficient Fertilizer Production Applied in a Real EnvironmentThe project develops and optimizes plasma reactors for sustainable NOx production from air, aiming to enhance green fertilizer production and reduce NH3 emissions in agriculture. | ERC POC | € 150.000 | 2022 | Details |
Superconductor-Based Readiness Enhanced Magnetoplasmadynamic Electric PropulsionSUPREME aims to enhance the flight proficiency and commercial viability of AF-MPD thrusters using High-Temperature Superconductors for sustainable high-power electric propulsion in space applications. | EIC Transition | € 2.499.995 | 2023 | Details |
ElectrIfied ammoNia CrAcking iN sTructured reactorsINCANT aims to develop an innovative electrified catalytic reactor for efficient ammonia decomposition to hydrogen, enabling clean energy solutions with minimal CO2 emissions. | ERC POC | € 150.000 | 2023 | Details |
VOLTAHet project ontwikkelt het batterij-aangedreven raketvoortstuwingssysteem VOLTA voor kleine satellieten, gericht op het verbeteren van baanmanipulatie en het behalen van "space qualified" status. | MIT R&D Samenwerking | € 125.000 | 2016 | Details |
Plasma Reactors for Efficient Fertilizer Production Applied in a Real Environment
The project develops and optimizes plasma reactors for sustainable NOx production from air, aiming to enhance green fertilizer production and reduce NH3 emissions in agriculture.
Superconductor-Based Readiness Enhanced Magnetoplasmadynamic Electric Propulsion
SUPREME aims to enhance the flight proficiency and commercial viability of AF-MPD thrusters using High-Temperature Superconductors for sustainable high-power electric propulsion in space applications.
ElectrIfied ammoNia CrAcking iN sTructured reactors
INCANT aims to develop an innovative electrified catalytic reactor for efficient ammonia decomposition to hydrogen, enabling clean energy solutions with minimal CO2 emissions.
VOLTA
Het project ontwikkelt het batterij-aangedreven raketvoortstuwingssysteem VOLTA voor kleine satellieten, gericht op het verbeteren van baanmanipulatie en het behalen van "space qualified" status.