Sonio: Deep-Learning for Detection and Diagnostic of Prenatal Malformations
Sonio is an AI-driven platform that enhances fetal ultrasound by guiding OBGYNs in detecting congenital malformations, aiming to improve prenatal diagnosis accuracy and outcomes.
Projectdetails
Introduction
1 child out of 33 is born with a congenital malformation in developed countries, leading to mortality and disability which impact the children, the families, and the healthcare system.
Challenges in Detection
Fetal ultrasound is the standard non-invasive examination to screen for malformations, but 50% of malformations are not detected at routine exams. This is due to several factors:
- Fetal ultrasound is very complex.
- It is time-consuming.
- It is highly operator-dependent.
To achieve an accurate diagnosis, one needs to:
- Acquire the right images.
- Interpret them correctly.
- Combine them with blood and/or genetic tests.
Solution: Sonio
We created Sonio, an AI one-stop modular software platform to guide OBGYNs and sonographers during fetal ultrasound.
Core Features
The core of Sonio is the Clinical Brain, which is a unique mix of fetal medicine and AI. It is aware of:
- 1.6k anomalies
- 450 syndromes
The Clinical Brain can prioritize anomalies to identify the most probable diagnoses based on medical history and observed phenotype.
Future Developments
With EIC support, we will fully build image recognition and genomics into our platform to revolutionize prenatal diagnosis.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.500.000 |
Totale projectbegroting | € 5.717.542 |
Tijdlijn
Startdatum | 1-1-2023 |
Einddatum | 31-12-2024 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- SONIOpenvoerder
Land(en)
Vergelijkbare projecten binnen EIC Accelerator
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
The first medical device for non-invasive detection and monitoring of infant meningitisNEOSONICS is a non-invasive ultrasound device that detects infant meningitis by analyzing cerebrospinal fluid white blood cell levels, aiming to reduce reliance on risky lumbar punctures. | EIC Accelerator | € 2.500.000 | 2022 | Details |
AI-driven cardiac ultrasound analysisLigence is developing an AI-driven tool to automate heart ultrasound image analysis, enhancing accessibility, accuracy, and speed of diagnosis in healthcare settings. | EIC Accelerator | € 2.500.000 | 2022 | Details |
Point of care diagnostic solution for definitive differentiation of true and false threatened preterm labour casesINNITIUS aims to optimize TPTL diagnosis with Fine Birth, a non-invasive AI-driven device that assesses cervical tissue consistency, seeking €2.5M for further development and regulatory approval. | EIC Accelerator | € 2.342.835 | 2023 | Details |
Bringing newborn care home: An integral mHealth solution for neonatal jaundice management.Picterus is creating a digital platform for at-home neonatal jaundice screening, empowering families to monitor conditions and streamline healthcare referrals, improving outcomes and resource efficiency. | EIC Accelerator | € 2.499.999 | 2023 | Details |
The first medical device for non-invasive detection and monitoring of infant meningitis
NEOSONICS is a non-invasive ultrasound device that detects infant meningitis by analyzing cerebrospinal fluid white blood cell levels, aiming to reduce reliance on risky lumbar punctures.
AI-driven cardiac ultrasound analysis
Ligence is developing an AI-driven tool to automate heart ultrasound image analysis, enhancing accessibility, accuracy, and speed of diagnosis in healthcare settings.
Point of care diagnostic solution for definitive differentiation of true and false threatened preterm labour cases
INNITIUS aims to optimize TPTL diagnosis with Fine Birth, a non-invasive AI-driven device that assesses cervical tissue consistency, seeking €2.5M for further development and regulatory approval.
Bringing newborn care home: An integral mHealth solution for neonatal jaundice management.
Picterus is creating a digital platform for at-home neonatal jaundice screening, empowering families to monitor conditions and streamline healthcare referrals, improving outcomes and resource efficiency.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Decision support system voor medische diagnosesNobleo ontwikkelt een AI-gestuurd decision support systeem om medische diagnoses te verbeteren en zorgkosten te verlagen. | Mkb-innovati... | € 20.000 | 2020 | Details |
One Minute Skully Check AppTwentynext B.V. en Skully Care B.V. ontwikkelen de 'One Minute Skully Check App' om binnen 60 seconden schedelafwijkingen bij baby's nauwkeurig te detecteren, wat zorgkosten verlaagt en ziekenhuisbezoeken vermindert. | Mkb-innovati... | € 200.000 | 2023 | Details |
A tool to detect cognitive abnormalities in the first year of life based on electroencephalography (EEG)The babylearn project aims to develop an EEG-based tool for early assessment of cognitive functions in infants, enhancing diagnosis and support for at-risk populations like premature babies. | ERC Proof of... | € 150.000 | 2023 | Details |
Advancing stroke care with cutting-edge ultrasound biomarkers for Neurocritical CareResolve Stroke aims to enhance ultrasound imaging with the SYLVER system to improve stroke diagnosis and management through innovative biomarkers, making timely detection more accessible and effective. | EIC Transition | € 2.493.436 | 2025 | Details |
Project Yomid IT-platformHet Yomidplatform ontwikkelt AI-technologie om prenatale zorg te verbeteren door informatie te ontsluiten en zwangeren te verbinden met medische professionals, wat de zorgkwaliteit en efficiëntie verhoogt. | Mkb-innovati... | € 192.290 | 2023 | Details |
Decision support system voor medische diagnoses
Nobleo ontwikkelt een AI-gestuurd decision support systeem om medische diagnoses te verbeteren en zorgkosten te verlagen.
One Minute Skully Check App
Twentynext B.V. en Skully Care B.V. ontwikkelen de 'One Minute Skully Check App' om binnen 60 seconden schedelafwijkingen bij baby's nauwkeurig te detecteren, wat zorgkosten verlaagt en ziekenhuisbezoeken vermindert.
A tool to detect cognitive abnormalities in the first year of life based on electroencephalography (EEG)
The babylearn project aims to develop an EEG-based tool for early assessment of cognitive functions in infants, enhancing diagnosis and support for at-risk populations like premature babies.
Advancing stroke care with cutting-edge ultrasound biomarkers for Neurocritical Care
Resolve Stroke aims to enhance ultrasound imaging with the SYLVER system to improve stroke diagnosis and management through innovative biomarkers, making timely detection more accessible and effective.
Project Yomid IT-platform
Het Yomidplatform ontwikkelt AI-technologie om prenatale zorg te verbeteren door informatie te ontsluiten en zwangeren te verbinden met medische professionals, wat de zorgkwaliteit en efficiëntie verhoogt.