Photonic Integrated Circuits For Access System in Telecom
PICadvanced aims to develop a novel Photonic Integrated Circuit design for Optical Network Units, enabling 10Gbps broadband with minimal upgrades, reduced costs, and lower environmental impact.
Projectdetails
Introduction
The number of internet-enabled users, devices, and bandwidth-hungry applications is increasing constantly, and network operators are struggling to meet the demand for more bandwidth. The problem is most acutely felt by end users of fixed broadband connections, typically served by passive optical networks (PONs): speed throttling and connection drop-outs are the most-reported issues.
Challenges for Telecom Operators
Telecom operators are typically too margin-stressed to invest in entirely new infrastructure and have to maximize returns on existing PONs. Developments to deliver higher transfer rates currently focus on discrete optical components, which have reached their limits in terms of:
- Scalability
- Performance
- Footprint
- Power consumption
- Reliability
- Cost
The integration of optical components into Photonic Integrated Circuits (PICs) offers a new technology trajectory that will overcome these limitations, but the increasing component density this entails presents challenges.
PICadvanced's Solution
Through a string of successful R&D projects conducted in world-class facilities by an expert team, PICadvanced has laid the foundation for a novel PIC design serving as a platform for an entirely new generation of optical transceivers, specifically Optical Network Units (ONUs) deployed at end user premises.
This innovation overcomes the current limit of 2.5Gbps and offers higher bandwidths with minimal upgrades of end user hardware while fulfilling the strict requirements of the telecom sector regarding:
- Footprint
- Power consumption
- Cost
Demonstrator and Future Prospects
Our demonstrator will achieve 10Gbps, open a technology roadmap towards 25Gbps/50Gbps, and enable the telecom sector to achieve:
- A better quality of service
- Higher customer satisfaction
- More efficient utilization of existing fibre optic network assets
Environmental Impact
We will also demonstrate how this new generation of fast broadband technology can be delivered to end users with a lower environmental footprint by:
- Reducing raw material input
- Achieving 40% lower hardware costs
- Achieving 20% lower energy consumption
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.444.378 |
Totale projectbegroting | € 3.491.968 |
Tijdlijn
Startdatum | 1-3-2024 |
Einddatum | 28-2-2026 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- PICADVANCED, SApenvoerder
Land(en)
Vergelijkbare projecten binnen EIC Accelerator
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
A new cardioprotective drug for acute treatment of myocardial infarctionResoTher aims to validate RTP-026, an immunomodulating therapy, to reduce heart damage and HF risk post-myocardial infarction through Phase II clinical studies. | EIC Accelerator | € 2.499.999 | 2024 | Details |
Clear, scalable and scientific framework to measure terrestrial biodiversity3Bee leverages IoT, wildlife monitoring, and satellite data to measure and regenerate biodiversity, generating certified Biodiversity Credits for corporations to enhance ESG reporting and brand value. | EIC Accelerator | € 2.252.714 | 2024 | Details |
Novel and Scalable microbial products for REgenerative agricultureN-Spire aims to revolutionize agriculture by creating a sustainable bioactive fertilizer through innovative manufacturing techniques, enhancing soil health and reducing chemical dependency. | EIC Accelerator | € 2.499.999 | 2024 | Details |
Quantum-based Randomness Processing Units (RPUs) for High-Performance Computation and Data SecurityQuside's Randomness Processing Unit (RPU) accelerates stochastic HPC and PQ cryptography by optimizing random workloads, enhancing efficiency and performance across various sectors. | EIC Accelerator | € 2.499.999 | 2024 | Details |
A new cardioprotective drug for acute treatment of myocardial infarction
ResoTher aims to validate RTP-026, an immunomodulating therapy, to reduce heart damage and HF risk post-myocardial infarction through Phase II clinical studies.
Clear, scalable and scientific framework to measure terrestrial biodiversity
3Bee leverages IoT, wildlife monitoring, and satellite data to measure and regenerate biodiversity, generating certified Biodiversity Credits for corporations to enhance ESG reporting and brand value.
Novel and Scalable microbial products for REgenerative agriculture
N-Spire aims to revolutionize agriculture by creating a sustainable bioactive fertilizer through innovative manufacturing techniques, enhancing soil health and reducing chemical dependency.
Quantum-based Randomness Processing Units (RPUs) for High-Performance Computation and Data Security
Quside's Randomness Processing Unit (RPU) accelerates stochastic HPC and PQ cryptography by optimizing random workloads, enhancing efficiency and performance across various sectors.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
High Speed Communication Links Based on Heterogeneous ChipsThe COMb project aims to develop ultra-high-speed transceivers using Indium Phosphide and Lithium Niobate on a silicon nitride platform to enhance data transmission rates and efficiency. | ERC POC | € 150.000 | 2022 | Details |
A Quantum System on Chip for equal access to secure communications: a pilot-ready photonic integrated circuit with embedded quantum key distribution functions for high-performance transceivers.PhotonIP aims to develop a cost-effective, miniaturized Quantum System on Chip (QSoC) for mass-market quantum key distribution, ensuring secure communications across existing networks. | EIC Transition | € 2.307.188 | 2022 | Details |
CIRCULATING LIGHT ON ANY PHOTONIC PLATFORMCIRCULIGHT aims to revolutionize Photonic Integrated Circuits by developing a low-cost, miniaturized optical circulator using advanced materials, enhancing functionality and sustainability across diverse applications. | EIC Pathfinder | € 2.908.754 | 2024 | Details |
Adaptive microcombs for innovative connectivity in datacenter applications and optical clocksAmica aims to revolutionize datacentre interconnects by developing a scalable microcomb technology for multi-wavelength laser sources, targeting petabit-per-second speeds and efficient mass production. | EIC Transition | € 2.499.340 | 2024 | Details |
High Speed Communication Links Based on Heterogeneous Chips
The COMb project aims to develop ultra-high-speed transceivers using Indium Phosphide and Lithium Niobate on a silicon nitride platform to enhance data transmission rates and efficiency.
A Quantum System on Chip for equal access to secure communications: a pilot-ready photonic integrated circuit with embedded quantum key distribution functions for high-performance transceivers.
PhotonIP aims to develop a cost-effective, miniaturized Quantum System on Chip (QSoC) for mass-market quantum key distribution, ensuring secure communications across existing networks.
CIRCULATING LIGHT ON ANY PHOTONIC PLATFORM
CIRCULIGHT aims to revolutionize Photonic Integrated Circuits by developing a low-cost, miniaturized optical circulator using advanced materials, enhancing functionality and sustainability across diverse applications.
Adaptive microcombs for innovative connectivity in datacenter applications and optical clocks
Amica aims to revolutionize datacentre interconnects by developing a scalable microcomb technology for multi-wavelength laser sources, targeting petabit-per-second speeds and efficient mass production.