Highly efficient, heavy metal-free color conversion ink technology for microLED applications
QustomDot aims to lead the microLED display market by providing a heavy metal-free quantum dot solution that meets industry demands for stability and optical performance.
Projectdetails
Introduction
QustomDot is the first and only company developing an all-around heavy metal-free quantum dot (QD) solution which is fully RoHS-compliant while combining high stability under high light flux with the excellent optical properties required by the microLED applications.
Industry Demand
This is an urgent demand from the display industry, which cannot develop marketable microLED displays without using an efficient QD color conversion technology (QDCC) free of heavy metals.
Target Customers
Our main target customers are the microLED developers/manufacturers, while the users are panel makers, OEMs, and the end user.
Collaborations and Intellectual Property
We are already collaborating with key players from all the layers of the value chain, and we have 6 patent families (3 of them already granted).
Future Vision
Our unique capacity as key enablers of the microLED technology will position us as the reference on QDCC for the next-generation display technology.
Market Goals
Our vision is to become a world leader in the QD quantum dot market, addressing 20% of the market share by 2030.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.499.894 |
Totale projectbegroting | € 3.571.277 |
Tijdlijn
Startdatum | 1-3-2024 |
Einddatum | 28-2-2026 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- QUSTOMDOTpenvoerder
Land(en)
Vergelijkbare projecten binnen EIC Accelerator
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
A new cardioprotective drug for acute treatment of myocardial infarctionResoTher aims to validate RTP-026, an immunomodulating therapy, to reduce heart damage and HF risk post-myocardial infarction through Phase II clinical studies. | EIC Accelerator | € 2.499.999 | 2024 | Details |
Clear, scalable and scientific framework to measure terrestrial biodiversity3Bee leverages IoT, wildlife monitoring, and satellite data to measure and regenerate biodiversity, generating certified Biodiversity Credits for corporations to enhance ESG reporting and brand value. | EIC Accelerator | € 2.252.714 | 2024 | Details |
Novel and Scalable microbial products for REgenerative agricultureN-Spire aims to revolutionize agriculture by creating a sustainable bioactive fertilizer through innovative manufacturing techniques, enhancing soil health and reducing chemical dependency. | EIC Accelerator | € 2.499.999 | 2024 | Details |
Quantum-based Randomness Processing Units (RPUs) for High-Performance Computation and Data SecurityQuside's Randomness Processing Unit (RPU) accelerates stochastic HPC and PQ cryptography by optimizing random workloads, enhancing efficiency and performance across various sectors. | EIC Accelerator | € 2.499.999 | 2024 | Details |
A new cardioprotective drug for acute treatment of myocardial infarction
ResoTher aims to validate RTP-026, an immunomodulating therapy, to reduce heart damage and HF risk post-myocardial infarction through Phase II clinical studies.
Clear, scalable and scientific framework to measure terrestrial biodiversity
3Bee leverages IoT, wildlife monitoring, and satellite data to measure and regenerate biodiversity, generating certified Biodiversity Credits for corporations to enhance ESG reporting and brand value.
Novel and Scalable microbial products for REgenerative agriculture
N-Spire aims to revolutionize agriculture by creating a sustainable bioactive fertilizer through innovative manufacturing techniques, enhancing soil health and reducing chemical dependency.
Quantum-based Randomness Processing Units (RPUs) for High-Performance Computation and Data Security
Quside's Randomness Processing Unit (RPU) accelerates stochastic HPC and PQ cryptography by optimizing random workloads, enhancing efficiency and performance across various sectors.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Colloidal Quantum Dot Molecules for Display ApplicationsDeveloping coupled quantum dot molecules (CQDMs) for innovative, efficient, and vibrant display technologies, aiming for commercialization and industry partnerships. | ERC POC | € 150.000 | 2022 | Details |
Sustainable light-emitting devices through control of dynamic dopingThis project aims to develop sustainable light-emitting electrochemical cells (LECs) with efficient emission and minimal resource use by optimizing p-n junction formation and material design. | ERC ADG | € 2.500.000 | 2024 | Details |
Colloidal Indium Arsenide quantum dots as short-wave infrared single photon emittersMOONSHOT aims to develop RoHS-compliant, highly emissive InAs colloidal quantum dots for single-photon sources in the SWIR range, addressing limitations of current epitaxial technologies. | ERC POC | € 150.000 | 2024 | Details |
Quantum Dot coupling engineering (and dynamic spin decoupling/deep nuclei cooling): 2-dimensional cluster state generation for quantum information processingQCEED aims to develop a scalable platform for generating large-scale 2D photonic cluster states using advanced quantum dot systems to enhance quantum information processing capabilities. | EIC Pathfinder | € 3.013.180 | 2025 | Details |
Colloidal Quantum Dot Molecules for Display Applications
Developing coupled quantum dot molecules (CQDMs) for innovative, efficient, and vibrant display technologies, aiming for commercialization and industry partnerships.
Sustainable light-emitting devices through control of dynamic doping
This project aims to develop sustainable light-emitting electrochemical cells (LECs) with efficient emission and minimal resource use by optimizing p-n junction formation and material design.
Colloidal Indium Arsenide quantum dots as short-wave infrared single photon emitters
MOONSHOT aims to develop RoHS-compliant, highly emissive InAs colloidal quantum dots for single-photon sources in the SWIR range, addressing limitations of current epitaxial technologies.
Quantum Dot coupling engineering (and dynamic spin decoupling/deep nuclei cooling): 2-dimensional cluster state generation for quantum information processing
QCEED aims to develop a scalable platform for generating large-scale 2D photonic cluster states using advanced quantum dot systems to enhance quantum information processing capabilities.