From Research Optoacoustic Novelty To Imaging Established in Routine diagnostics
FRONTIER aims to translate the innovative MSOT technology into routine clinical imaging, enhancing disease diagnosis and treatment monitoring for clinicians globally.
Projectdetails
Introduction
Multispectral optoacoustic tomography (MSOT) is an innovative biomedical imaging technology that allows for molecular imaging in deep tissue. This noninvasive technology enables assessment of the concentration and distribution of a variety of clinically important molecules in the body and uniquely delivers information of e.g. oxygenation, inflammation, and fibrotic changes.
Significance of MSOT
MSOT has already demonstrated significant scientific and clinical value across a range of diseases and applications, making it a promising tool to diagnose diseases and monitor treatment response.
Current Limitations
Despite these early successes, the technology is not yet commercially viable on the broad clinical market and currently remains effectively confined to a research environment.
Project Goals
FRONTIER will provide iThera Medical the means to translate an optimized MSOT system (MSOT Frontier) from a research environment to application in routine clinical imaging, thereby providing clinicians worldwide a powerful new diagnostic tool.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.451.121 |
Totale projectbegroting | € 3.581.601 |
Tijdlijn
Startdatum | 1-4-2022 |
Einddatum | 31-3-2024 |
Subsidiejaar | 2022 |
Partners & Locaties
Projectpartners
- ITHERA MEDICAL GMBHpenvoerder
Land(en)
Vergelijkbare projecten binnen EIC Accelerator
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
A new cardioprotective drug for acute treatment of myocardial infarctionResoTher aims to validate RTP-026, an immunomodulating therapy, to reduce heart damage and HF risk post-myocardial infarction through Phase II clinical studies. | EIC Accelerator | € 2.499.999 | 2024 | Details |
Clear, scalable and scientific framework to measure terrestrial biodiversity3Bee leverages IoT, wildlife monitoring, and satellite data to measure and regenerate biodiversity, generating certified Biodiversity Credits for corporations to enhance ESG reporting and brand value. | EIC Accelerator | € 2.252.714 | 2024 | Details |
Novel and Scalable microbial products for REgenerative agricultureN-Spire aims to revolutionize agriculture by creating a sustainable bioactive fertilizer through innovative manufacturing techniques, enhancing soil health and reducing chemical dependency. | EIC Accelerator | € 2.499.999 | 2024 | Details |
Quantum-based Randomness Processing Units (RPUs) for High-Performance Computation and Data SecurityQuside's Randomness Processing Unit (RPU) accelerates stochastic HPC and PQ cryptography by optimizing random workloads, enhancing efficiency and performance across various sectors. | EIC Accelerator | € 2.499.999 | 2024 | Details |
A new cardioprotective drug for acute treatment of myocardial infarction
ResoTher aims to validate RTP-026, an immunomodulating therapy, to reduce heart damage and HF risk post-myocardial infarction through Phase II clinical studies.
Clear, scalable and scientific framework to measure terrestrial biodiversity
3Bee leverages IoT, wildlife monitoring, and satellite data to measure and regenerate biodiversity, generating certified Biodiversity Credits for corporations to enhance ESG reporting and brand value.
Novel and Scalable microbial products for REgenerative agriculture
N-Spire aims to revolutionize agriculture by creating a sustainable bioactive fertilizer through innovative manufacturing techniques, enhancing soil health and reducing chemical dependency.
Quantum-based Randomness Processing Units (RPUs) for High-Performance Computation and Data Security
Quside's Randomness Processing Unit (RPU) accelerates stochastic HPC and PQ cryptography by optimizing random workloads, enhancing efficiency and performance across various sectors.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Breaking the penetration limit of microscopy – Photoswitching OptoacousticsSWOPT aims to revolutionize in vivo imaging by combining optoacoustic imaging and photoswitching to visualize individual cells deep within tissues, enhancing research in life sciences and biomedicine. | EIC Pathfinder | € 3.536.935 | 2022 | Details |
Non-ionizing Metabolic Imaging for predicting the effect of and guiding Therapeutic InterventionsMITI aims to develop advanced non-invasive metabolic imaging technology for early disease detection and therapy effectiveness assessment, improving patient outcomes and reducing healthcare costs. | EIC Transition | € 2.100.238 | 2022 | Details |
FunctIonal optoacousticS for imaging Early onsEt of Gut inflammationThis project aims to develop functionalized contrast agents for multispectral optoacoustic tomography to enable non-invasive early detection of gastrointestinal inflammation. | ERC STG | € 1.453.730 | 2023 | Details |
In vivo Immunofluorescence-Optical Coherence TomographyDevelop a high-resolution endoscopic imaging system combining Optical Coherence Tomography and fluorescent antibodies for improved diagnosis and treatment of esophageal cancer and lung disease. | ERC ADG | € 2.500.000 | 2025 | Details |
Breaking the penetration limit of microscopy – Photoswitching Optoacoustics
SWOPT aims to revolutionize in vivo imaging by combining optoacoustic imaging and photoswitching to visualize individual cells deep within tissues, enhancing research in life sciences and biomedicine.
Non-ionizing Metabolic Imaging for predicting the effect of and guiding Therapeutic Interventions
MITI aims to develop advanced non-invasive metabolic imaging technology for early disease detection and therapy effectiveness assessment, improving patient outcomes and reducing healthcare costs.
FunctIonal optoacousticS for imaging Early onsEt of Gut inflammation
This project aims to develop functionalized contrast agents for multispectral optoacoustic tomography to enable non-invasive early detection of gastrointestinal inflammation.
In vivo Immunofluorescence-Optical Coherence Tomography
Develop a high-resolution endoscopic imaging system combining Optical Coherence Tomography and fluorescent antibodies for improved diagnosis and treatment of esophageal cancer and lung disease.