Adpative DBS
AlphaDBS enhances DBS treatment for Parkinson's by using adaptive stimulation based on local field potentials to optimize energy delivery in real-time.
Projectdetails
Introduction
Differently from other DBS systems on the market, the AlphaDBS can be programmed with two different types of stimulation:
Types of Stimulation
- Conventional DBS: This is implemented also by other DBS systems.
- Adaptive DBS (aDBS): This type automatically adjusts the energy delivered to the patient using a biosignal, local field potential (LFP), in a closed-loop configuration.
Local Field Potentials (LFP)
LFPs represent the synchronous presynaptic and postsynaptic activity of neuronal populations and can be recorded with the macro-electrodes routinely implanted for conventional DBS (cDBS).
Relevance in Parkinson Disease
In Parkinson Disease, LFPs (especially in the beta-band) are specifically modulated by:
- Dopamine intake
- Movement execution and preparation
Additionally, they encode non-motor functions, such as decision making.
Adaptive Algorithm
The beta band power represents the input variable to the adaptive algorithm, implemented by the AlphaDBS system, which computes a new stimulation value every second.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.499.999 |
Totale projectbegroting | € 3.725.437 |
Tijdlijn
Startdatum | 1-3-2023 |
Einddatum | 28-2-2025 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- NEWRONIKA SPApenvoerder
Land(en)
Vergelijkbare projecten binnen EIC Accelerator
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
A new cardioprotective drug for acute treatment of myocardial infarctionResoTher aims to validate RTP-026, an immunomodulating therapy, to reduce heart damage and HF risk post-myocardial infarction through Phase II clinical studies. | EIC Accelerator | € 2.499.999 | 2024 | Details |
Clear, scalable and scientific framework to measure terrestrial biodiversity3Bee leverages IoT, wildlife monitoring, and satellite data to measure and regenerate biodiversity, generating certified Biodiversity Credits for corporations to enhance ESG reporting and brand value. | EIC Accelerator | € 2.252.714 | 2024 | Details |
Novel and Scalable microbial products for REgenerative agricultureN-Spire aims to revolutionize agriculture by creating a sustainable bioactive fertilizer through innovative manufacturing techniques, enhancing soil health and reducing chemical dependency. | EIC Accelerator | € 2.499.999 | 2024 | Details |
Quantum-based Randomness Processing Units (RPUs) for High-Performance Computation and Data SecurityQuside's Randomness Processing Unit (RPU) accelerates stochastic HPC and PQ cryptography by optimizing random workloads, enhancing efficiency and performance across various sectors. | EIC Accelerator | € 2.499.999 | 2024 | Details |
A new cardioprotective drug for acute treatment of myocardial infarction
ResoTher aims to validate RTP-026, an immunomodulating therapy, to reduce heart damage and HF risk post-myocardial infarction through Phase II clinical studies.
Clear, scalable and scientific framework to measure terrestrial biodiversity
3Bee leverages IoT, wildlife monitoring, and satellite data to measure and regenerate biodiversity, generating certified Biodiversity Credits for corporations to enhance ESG reporting and brand value.
Novel and Scalable microbial products for REgenerative agriculture
N-Spire aims to revolutionize agriculture by creating a sustainable bioactive fertilizer through innovative manufacturing techniques, enhancing soil health and reducing chemical dependency.
Quantum-based Randomness Processing Units (RPUs) for High-Performance Computation and Data Security
Quside's Randomness Processing Unit (RPU) accelerates stochastic HPC and PQ cryptography by optimizing random workloads, enhancing efficiency and performance across various sectors.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Interrogating basal ganglia reinforcement with deep brain stimulation in Parkinson’s disease.ReinforceBG aims to explore dopamine's role in Parkinson's disease through advanced neuromodulation techniques to enhance understanding and develop innovative treatments for motor and cognitive symptoms. | ERC STG | € 1.499.580 | 2023 | Details |
Atlas of the Human Deep Brain Nuclei, Connections, and VasculatureThe project aims to create an atlas of human deep brain nuclei and vasculature to enhance deep-brain stimulation outcomes and minimize side effects in movement and neuropsychiatric disorders. | ERC POC | € 150.000 | 2023 | Details |
Advanced Intelligent stimulation device: HAND movement restorationThe AI-HAND project aims to develop an advanced ASIC-based implanted device with self-adapting electrodes to restore hand movements in quadriplegic patients through innovative nerve stimulation techniques. | EIC Pathfinder | € 2.999.834 | 2023 | Details |
Desynchronizing weak cortical fields during deep brain stimulationDECODE aims to enhance deep brain stimulation for Parkinson's by investigating weak electric fields' role in desynchronizing neural activity to improve motor control and reduce side effects. | ERC STG | € 1.498.914 | 2024 | Details |
Interrogating basal ganglia reinforcement with deep brain stimulation in Parkinson’s disease.
ReinforceBG aims to explore dopamine's role in Parkinson's disease through advanced neuromodulation techniques to enhance understanding and develop innovative treatments for motor and cognitive symptoms.
Atlas of the Human Deep Brain Nuclei, Connections, and Vasculature
The project aims to create an atlas of human deep brain nuclei and vasculature to enhance deep-brain stimulation outcomes and minimize side effects in movement and neuropsychiatric disorders.
Advanced Intelligent stimulation device: HAND movement restoration
The AI-HAND project aims to develop an advanced ASIC-based implanted device with self-adapting electrodes to restore hand movements in quadriplegic patients through innovative nerve stimulation techniques.
Desynchronizing weak cortical fields during deep brain stimulation
DECODE aims to enhance deep brain stimulation for Parkinson's by investigating weak electric fields' role in desynchronizing neural activity to improve motor control and reduce side effects.