Dynamics of Protein–Ligand Interactions
The project aims to advance protein dynamics research by integrating time-resolved X-ray crystallography, NMR spectroscopy, and molecular simulations to elucidate molecular recognition processes at atomic resolution.
Projectdetails
Introduction
Proteins are biological macromolecules that are vital to all processes of life. Understanding the functions of proteins has great scientific and commercial value: proteins are used as industrial enzymes, as pharmaceutical treatments, and many proteins are the targets of drugs.
Current Knowledge
Current knowledge of protein function is primarily based on static structures, which have provided great insights about structure-function relationships that today form the basis for protein science and protein engineering. Proteins are, however, not static molecules, but undergo spontaneous transitions between alternative structural states, some of which are rare, transient conformations that are essentially invisible to traditional methods.
Importance of Dynamics
These dynamical properties are known to be critically important for function, but high-resolution studies of dynamics have so far been conducted merely as an add-on following structural studies.
Project Aim
To change the situation, we aim to establish integrative biomolecular dynamics by developing methods that integrate time-resolved X-ray crystallography, nuclear magnetic resonance spectroscopy, and molecular simulations to study the motions of proteins while they carry out their function.
Focus Area
We focus on the challenging problem of molecular recognition because it represents a poorly understood frontier in molecular science where advances are expected to have great impact. Specifically, we will address the question of how proteins bind ligands by describing with atomic resolution the entire dynamic process to reach a consistent kinetic, thermodynamic, and structural view.
Method Development
We are at a point where it will be possible to develop the individual techniques required for our integrative biomolecular dynamics approach. As a team, we can leverage ongoing developments in hardware and methods, while ensuring the tight integration between methods that is needed to study complex dynamical systems.
Conclusion
We thus aim to move structural biology into a new era of protein dynamics.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 8.721.625 |
Totale projectbegroting | € 8.721.625 |
Tijdlijn
Startdatum | 1-5-2023 |
Einddatum | 30-4-2029 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- LUNDS UNIVERSITETpenvoerder
- KOBENHAVNS UNIVERSITET
- UNIVERSITAETSKLINIKUM HAMBURG-EPPENDORF
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Computation driven development of novel vivo-like-DNA-nanotransducers for biomolecules structure identificationThis project aims to develop DNA-nanotransducers for real-time detection and analysis of conformational changes in biomolecules, enhancing understanding of molecular dynamics and aiding drug discovery. | EIC Pathfinder | € 3.000.418 | 2022 | Details |
A Native Mass Spectrometry Systemic View of Cellular Structural BiologyThis project aims to enhance native mass spectrometry for studying protein interactions and diversity in their natural cellular environments, advancing structural biology and related fields. | ERC ADG | € 2.954.167 | 2023 | Details |
A holistic approach to bridge the gap between microsecond computer simulations and millisecond biological eventsThis project aims to bridge μs computer simulations and ms biological processes by developing methods to analyze conformational transitions in V1Vo–ATPase, enhancing understanding of ATP-driven mechanisms. | ERC ADG | € 2.134.529 | 2023 | Details |
Protein function regulation through inserts for response to biological, chemical and physical signalsThis project aims to develop a modular platform for engineering proteins to sense and respond to diverse signals, enhancing their functionality for innovative biomedical applications. | ERC ADG | € 2.500.000 | 2024 | Details |
Computation driven development of novel vivo-like-DNA-nanotransducers for biomolecules structure identification
This project aims to develop DNA-nanotransducers for real-time detection and analysis of conformational changes in biomolecules, enhancing understanding of molecular dynamics and aiding drug discovery.
A Native Mass Spectrometry Systemic View of Cellular Structural Biology
This project aims to enhance native mass spectrometry for studying protein interactions and diversity in their natural cellular environments, advancing structural biology and related fields.
A holistic approach to bridge the gap between microsecond computer simulations and millisecond biological events
This project aims to bridge μs computer simulations and ms biological processes by developing methods to analyze conformational transitions in V1Vo–ATPase, enhancing understanding of ATP-driven mechanisms.
Protein function regulation through inserts for response to biological, chemical and physical signals
This project aims to develop a modular platform for engineering proteins to sense and respond to diverse signals, enhancing their functionality for innovative biomedical applications.