SubsidieMeesters logoSubsidieMeesters
ProjectenRegelingenAnalyses

Understanding how long non-coding RNAs adapt the adipocyte for specialised lipid storage and breakdown.

This project investigates the role of long non-coding RNAs in regulating lipid metabolism in adipocytes to understand their impact on obesity-related diseases and metabolic homeostasis.

Subsidie
€ 1.493.925
2025

Projectdetails

Introduction

Energy is stored in adipocytes as a large uniocular lipid droplet, which can be broken down into fatty acids (FAs) and released into the circulation when needed. This specialised lipid storage and breakdown requires dynamic organisation of metabolic enzymes and cofactors around the large lipid droplet for metabolic homeostasis. In obesity, the adipocyte dysfunctions, resulting in high spontaneous release of FAs. This chronic release and elevation of systemic FAs is a major driver of systemic insulin resistance, type 2 diabetes, and other cardiometabolic diseases.

Research Hypothesis

I postulate that long non-coding RNAs (lncRNAs) interact with the metabolic machinery within the adipocyte to organize cell- and stimulation-specific interactomes, channelling substrate flux within the cell. Adipocytes express over 4000 lncRNAs, many of which are unique to humans and this cell type. However, whether these lncRNAs contribute to the adipocyte’s specialised lipid metabolism in health and disease is not understood. This proposed research aims to address this question.

Methodologies

I have already developed key methodologies to study lncRNAs in human adipocytes, including a novel technique called TROOPS that identifies specific lncRNA-interacting proteins. Leveraging an extensive bank of white adipose tissue biopsies from uniquely characterized patients, I will:

  1. Identify disease-regulated lncRNAs.
  2. Test how they function in human adipocytes.
  3. Use gene editing techniques and lipid/metabolomics analysis to define the role of these lncRNAs in lipid storage and FA release.

Advanced Techniques

Furthermore, I will use protein-lncRNA complex purification combined with advanced microscopy techniques to reveal how lncRNAs can sequester protein complexes into phase-separated organelles and organize adipocyte lipid metabolism.

Expected Outcomes

These insights will provide a paradigm shift in understanding how lncRNAs enable the adipocyte to perform specialized functions and new generalizable findings for how lncRNAs contribute to cell function.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 1.493.925
Totale projectbegroting€ 1.493.925

Tijdlijn

Startdatum1-1-2025
Einddatum31-12-2029
Subsidiejaar2025

Partners & Locaties

Projectpartners

  • KAROLINSKA INSTITUTETpenvoerder

Land(en)

Sweden

Inhoudsopgave

European Research Council

Financiering tot €10 miljoen voor baanbrekend frontier-onderzoek via ERC-grants (Starting, Consolidator, Advanced, Synergy, Proof of Concept).

Bekijk regeling

Vergelijkbare projecten binnen European Research Council

ProjectRegelingBedragJaarActie

Control of body weight by specialized brain-adipose loop neurons

This project aims to identify and manipulate brain circuits involved in non-hormonal communication with white adipose tissue to enhance understanding and treatment of obesity.

ERC Starting...€ 1.499.521
2024
Details

Harnessing an energy-expending, appetite-suppressing fat-brain axis to unlock novel pharmacotherapies

The HEAT-UP project aims to explore a novel leptin-independent signaling axis between adipose tissue and the CNS to enhance calorie-burning and reduce obesity, leveraging advanced genetic and viral techniques.

ERC Consolid...€ 2.000.000
2023
Details

Targeting long non-coding RNAs for novel treatment strategies in vascular diseases

This project aims to identify and target specific long non-coding RNAs involved in vascular diseases using innovative RNA interference strategies to improve treatment outcomes.

ERC Consolid...€ 1.999.495
2023
Details

Deconstructing Hypothalamic Neurocircuitry Architecture and Function in Metabolic Control during Health and Disease

This project aims to map hypothalamic neuron types and circuits involved in body weight regulation to enhance understanding and treatment of obesity and related metabolic diseases.

ERC Advanced...€ 2.500.000
2025
Details

Understanding Metabolic Activation of Dendritic Cells in Non-Alcoholic Fatty Liver Disease

This project aims to investigate the role of conventional dendritic cells in non-alcoholic steatohepatitis by exploring their immuno-metabolic functions and interactions with liver metabolism.

ERC Starting...€ 2.406.250
2022
Details
ERC Starting...

Control of body weight by specialized brain-adipose loop neurons

This project aims to identify and manipulate brain circuits involved in non-hormonal communication with white adipose tissue to enhance understanding and treatment of obesity.

ERC Starting Grant
€ 1.499.521
2024
Details
ERC Consolid...

Harnessing an energy-expending, appetite-suppressing fat-brain axis to unlock novel pharmacotherapies

The HEAT-UP project aims to explore a novel leptin-independent signaling axis between adipose tissue and the CNS to enhance calorie-burning and reduce obesity, leveraging advanced genetic and viral techniques.

ERC Consolidator Grant
€ 2.000.000
2023
Details
ERC Consolid...

Targeting long non-coding RNAs for novel treatment strategies in vascular diseases

This project aims to identify and target specific long non-coding RNAs involved in vascular diseases using innovative RNA interference strategies to improve treatment outcomes.

ERC Consolidator Grant
€ 1.999.495
2023
Details
ERC Advanced...

Deconstructing Hypothalamic Neurocircuitry Architecture and Function in Metabolic Control during Health and Disease

This project aims to map hypothalamic neuron types and circuits involved in body weight regulation to enhance understanding and treatment of obesity and related metabolic diseases.

ERC Advanced Grant
€ 2.500.000
2025
Details
ERC Starting...

Understanding Metabolic Activation of Dendritic Cells in Non-Alcoholic Fatty Liver Disease

This project aims to investigate the role of conventional dendritic cells in non-alcoholic steatohepatitis by exploring their immuno-metabolic functions and interactions with liver metabolism.

ERC Starting Grant
€ 2.406.250
2022
Details

SubsidieMeesters logoSubsidieMeesters

Vind en verken subsidieprojecten in Nederland en Europa.

Links

  • Projecten
  • Regelingen
  • Analyses

Suggesties

Heb je ideeën voor nieuwe features of verbeteringen?

Deel je suggestie
© 2025 SubsidieMeesters. Alle rechten voorbehouden.