Practical magnesium batteries enabled by 2D crystalline polymer-based artificial electrode skins
This project aims to enhance Mg battery performance by developing customizable 2D crystalline polymer electrode skins to improve interfacial Mg2+ transport and enable practical applications.
Projectdetails
Introduction
The intrinsic limitation of Li-ion batteries (i.e., cost, safety, and sustainability) is imposing a strong demand for next-generation battery technologies based on resource-abundant elements. Among the top candidates for this purpose are Mg batteries. However, state-of-the-art Mg batteries still encounter numerous problems (e.g., low Coulombic efficiency, energy efficiency, energy density, and cycle life) and are far from mature to satisfy practical use.
Challenges in Mg Batteries
The disappointing performance of Mg batteries is dominantly assigned to the problematic interfacial charge transfer governed by the charge-dense Mg2+ at both the anodes and cathodes.
Proposed Solution
Here, I propose the ground-breaking concept of using molecule-customisable 2D crystalline polymers (2DCPs) as artificial electrode ‘skins’ to regulate the interfacial Mg2+ transport and enable practical Mg batteries.
Synthesis of 2DCPs
Relying on dynamic imine and sp2-carbon linkage reactions, ultrathin 2DCPs with varying porosity, dense nucleophilic groups, and stable polymer skeletons will be synthesised as the artificial electrode skins for Mg batteries.
Expected Outcomes
Multifunctional 2DCPs are expected to promote practically useful Mg anode stripping/plating chemistry and high-voltage/high-capacity cathode chemistries by:
- Forcing Mg2+ desolvation and Mg2+-anion dissociation.
- Allowing fast and selective interfacial Mg2+ transport.
- Inhibiting the parasitic reactions associated with the electrolyte.
Research Approach
An integrated approach combining atom-level structure investigation, Mg2+-transport study, and electrode chemistry evaluation will establish the molecular design principle for the optimal electrode skins.
Conclusion
Ultimately, with artificial electrode skins, the prototype configurations for practical Mg batteries will be formulated, offering intellectual property for future battery products. Besides, the acquired ion-transport knowledge will hold promise in many other applications, such as ion sieving, capacitive deionisation, and salinity gradient energy harvesting.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.499.900 |
Totale projectbegroting | € 1.499.900 |
Tijdlijn
Startdatum | 1-12-2023 |
Einddatum | 30-11-2028 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- TECHNISCHE UNIVERSITAET DRESDENpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Multi-metal anode: Towards safe and energy dense batteriesMULTIMETALBAT aims to enhance metal anode battery performance and safety by developing multi-cation electrolytes to improve electrodeposition and achieve higher energy densities. | ERC Consolid... | € 1.889.561 | 2023 | Details |
THERmal MOdulators based on novel 2D mxEne materials for nearly isothermAL battery operationTHERMO2DEAL aims to develop a novel interfacial thermal modulator using MXenes for dynamic heat management in batteries, enhancing performance and lifespan through advanced thermal regulation. | ERC Consolid... | € 1.988.794 | 2024 | Details |
Deconstructing the Electrode-Electrolyte Interface by Novel NMR MethodologyThis project aims to enhance rechargeable battery efficiency by investigating the solid electrolyte interphase (SEI) using advanced NMR techniques to optimize ion transport and design next-generation energy storage systems. | ERC Consolid... | € 2.228.750 | 2025 | Details |
Highly Redox-active Atomic Centers in Electrode Materials for Rechargeable BatteriesThis project aims to develop innovative electrode materials for alkali-ion batteries by combining stable insertion structures with atomic redox centers to enhance energy and power densities. | ERC Starting... | € 1.324.314 | 2022 | Details |
Future storage systems for the energy transition: Polymer-based redox-flow batteriesFutureBAT aims to revolutionize polymer-based redox-flow batteries by developing novel organic materials and advanced structures to enhance capacity, lifetime, and stability for efficient energy storage. | ERC Advanced... | € 2.499.355 | 2023 | Details |
Multi-metal anode: Towards safe and energy dense batteries
MULTIMETALBAT aims to enhance metal anode battery performance and safety by developing multi-cation electrolytes to improve electrodeposition and achieve higher energy densities.
THERmal MOdulators based on novel 2D mxEne materials for nearly isothermAL battery operation
THERMO2DEAL aims to develop a novel interfacial thermal modulator using MXenes for dynamic heat management in batteries, enhancing performance and lifespan through advanced thermal regulation.
Deconstructing the Electrode-Electrolyte Interface by Novel NMR Methodology
This project aims to enhance rechargeable battery efficiency by investigating the solid electrolyte interphase (SEI) using advanced NMR techniques to optimize ion transport and design next-generation energy storage systems.
Highly Redox-active Atomic Centers in Electrode Materials for Rechargeable Batteries
This project aims to develop innovative electrode materials for alkali-ion batteries by combining stable insertion structures with atomic redox centers to enhance energy and power densities.
Future storage systems for the energy transition: Polymer-based redox-flow batteries
FutureBAT aims to revolutionize polymer-based redox-flow batteries by developing novel organic materials and advanced structures to enhance capacity, lifetime, and stability for efficient energy storage.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MEDIATED BIPHASIC BATTERYThe MeBattery project aims to develop a next-generation flow battery technology that balances sustainability, efficiency, and longevity, using innovative thermodynamic concepts and non-critical materials. | EIC Pathfinder | € 2.508.694 | 2022 | Details |
High performing electrically rechargeable zinc-air batteries for sustainable mid-term energy storageHIPERZAB aims to design and validate an Electrically Rechargeable Zinc-Air Battery for enhanced mid-term energy storage, focusing on sustainable materials and innovative components to improve performance and reduce costs. | EIC Pathfinder | € 3.939.947 | 2023 | Details |
SmartAgain® Polymer for Metalized-Polymer-Film Current Collector (MPFC)Het project evalueert de geschiktheid van SmartAgain® polymeren voor verbeterde veiligheid en prestaties van Metalized Polymer Film Current Collectors. | Mkb-innovati... | € 20.000 | 2024 | Details |
Transition of 2D-chemistry based supercapacitor electrode material from proof of concept to applicationsThe TRANS2DCHEM project aims to enhance energy storage devices by utilizing nitrogen super-doped graphene electrodes to achieve unprecedented performance and technology readiness for industrial applications. | EIC Transition | € 2.485.717 | 2022 | Details |
Sustainable powder materials for zinc rechargeable batteriesEASYL's project aims to license green production of critical battery powders using patented technology, targeting enhanced battery longevity and performance for zinc-based systems. | EIC Accelerator | € 2.495.281 | 2023 | Details |
MEDIATED BIPHASIC BATTERY
The MeBattery project aims to develop a next-generation flow battery technology that balances sustainability, efficiency, and longevity, using innovative thermodynamic concepts and non-critical materials.
High performing electrically rechargeable zinc-air batteries for sustainable mid-term energy storage
HIPERZAB aims to design and validate an Electrically Rechargeable Zinc-Air Battery for enhanced mid-term energy storage, focusing on sustainable materials and innovative components to improve performance and reduce costs.
SmartAgain® Polymer for Metalized-Polymer-Film Current Collector (MPFC)
Het project evalueert de geschiktheid van SmartAgain® polymeren voor verbeterde veiligheid en prestaties van Metalized Polymer Film Current Collectors.
Transition of 2D-chemistry based supercapacitor electrode material from proof of concept to applications
The TRANS2DCHEM project aims to enhance energy storage devices by utilizing nitrogen super-doped graphene electrodes to achieve unprecedented performance and technology readiness for industrial applications.
Sustainable powder materials for zinc rechargeable batteries
EASYL's project aims to license green production of critical battery powders using patented technology, targeting enhanced battery longevity and performance for zinc-based systems.