Mesoscopic understanding of supported catalysts with overlapping electric double layers
MESO-CAT aims to explore the impact of overlapping electric double layers on the performance of supported nanoparticle catalysts to enhance electrochemical energy conversion.
Projectdetails
Introduction
A defossilized global energy ecosystem hinges on efficient conversion between renewable electrical energy and chemical energy stored in molecules. This conversion requires precious catalysts to drive relevant reactions at practical rates. Many catalysts are employed in the form of nanoparticles (NP) dispersed on support materials.
Electric Double Layer (EDL)
All relevant reactions occur in a nanoscale region at the interface between the solid catalyst and an electrolyte solution, i.e., an electric double layer (EDL). Our current knowledge of EDL is essentially limited to planar electrodes with a single EDL, whereas supported NP catalysts (SNPC) exhibit radically different EDL characteristics.
Characteristics of SNPC
SNPC features overlap of individual EDLs around the NPs and the adjacent support material. This knowledge gap, concerning crucial local reaction conditions within the EDL, prevents effectively transferring knowledge obtained at planar electrodes to performance improvements of SNPC.
Project Objectives
MESO-CAT aims at launching the mesoscopic (1~100 nm) science of overlapping EDLs in SNPC and unraveling the influence of overlapping EDLs on the structure-activity relationship of SNPC. MESO-CAT will address three foundational questions in electrocatalysis of SNPC using theoretical methods in an interaction loop with experimentalists:
-
Formation of Overlapping EDLs
How are the overlapping EDLs formed under realistic conditions? This will be studied using a unique theoretical approach for mesoscale EDLs with both quantum mechanical electrons and classical electrolyte particles treated on equal footing. -
Influence on Electron Transfer Kinetics
How do overlapping EDLs influence elementary electron transfer kinetics? This will be unraveled using a model Hamiltonian for proton-coupled electron transfer considering various EDL effects. -
Impact on Structure-Activity Relationship
How do overlapping EDLs influence the overall structure-activity relationship? This will lay the groundwork for transformative advancements in electrochemical energy conversion via regulating the mesoscale EDL effects.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.441.000 |
Totale projectbegroting | € 1.441.000 |
Tijdlijn
Startdatum | 1-1-2025 |
Einddatum | 31-12-2029 |
Subsidiejaar | 2025 |
Partners & Locaties
Projectpartners
- FORSCHUNGSZENTRUM JULICH GMBHpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Directed Evolution of Metastable Electrocatalyst Interfaces for Energy ConversionThis project aims to revolutionize electrocatalysis by leveraging high entropy materials and advanced techniques to discover stable, active catalysts for energy conversion reactions. | ERC Synergy ... | € 9.973.679 | 2024 | Details |
Nanoscale Advance of CO2 ElectroreductionNASCENT aims to enhance CO2 electroreduction efficiency by innovating catalyst designs and interfaces, enabling sustainable production of key chemicals like C2 and C3+ from CO2. | ERC Starting... | € 1.944.060 | 2023 | Details |
Single-Atom Catalysts for a New Generation of Chemical Processes: from Fundamental Understanding to Interface EngineeringThis project aims to develop innovative single-atom catalysts for CO2 conversion through advanced synthesis and characterization techniques, enhancing sustainability in chemical manufacturing. | ERC Starting... | € 1.499.681 | 2023 | Details |
Force-Responsive Heterogeneous CatalystsThis project aims to develop tunable graphene-based catalytic materials that enhance reaction performance through externally controlled confinement, bridging the gap between artificial and natural catalysts. | ERC Consolid... | € 1.999.582 | 2025 | Details |
Deconstructing the Electrode-Electrolyte Interface by Novel NMR MethodologyThis project aims to enhance rechargeable battery efficiency by investigating the solid electrolyte interphase (SEI) using advanced NMR techniques to optimize ion transport and design next-generation energy storage systems. | ERC Consolid... | € 2.228.750 | 2025 | Details |
Directed Evolution of Metastable Electrocatalyst Interfaces for Energy Conversion
This project aims to revolutionize electrocatalysis by leveraging high entropy materials and advanced techniques to discover stable, active catalysts for energy conversion reactions.
Nanoscale Advance of CO2 Electroreduction
NASCENT aims to enhance CO2 electroreduction efficiency by innovating catalyst designs and interfaces, enabling sustainable production of key chemicals like C2 and C3+ from CO2.
Single-Atom Catalysts for a New Generation of Chemical Processes: from Fundamental Understanding to Interface Engineering
This project aims to develop innovative single-atom catalysts for CO2 conversion through advanced synthesis and characterization techniques, enhancing sustainability in chemical manufacturing.
Force-Responsive Heterogeneous Catalysts
This project aims to develop tunable graphene-based catalytic materials that enhance reaction performance through externally controlled confinement, bridging the gap between artificial and natural catalysts.
Deconstructing the Electrode-Electrolyte Interface by Novel NMR Methodology
This project aims to enhance rechargeable battery efficiency by investigating the solid electrolyte interphase (SEI) using advanced NMR techniques to optimize ion transport and design next-generation energy storage systems.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Membrane-assisted Ethylene Synthesis over Nanostructured Tandem CatalystsMemCat aims to develop tandem catalysts for direct CO2-to-ethylene conversion, enhancing efficiency and sustainability in producing carbon-negative plastic precursors. | EIC Pathfinder | € 3.867.840 | 2024 | Details |
Duurzame katalyse door innovatieve NanocoaterVSPARTICLE onderzoekt de haalbaarheid van een nanocoater voor katalysedeeltjes om efficiëntere, schonere en uniforme katalysatoren te ontwikkelen, waardoor katalyse-onderzoek en industriële toepassingen versneld worden. | Mkb-innovati... | € 20.000 | 2020 | Details |
Tech and business validation towards market readiness of high-performance PFSA-free intermetallic Pt-alloy membrane electrode assemblies for PEMFCs: Enabling next-gen hydrogen-based transportENABLER aims to develop a PFSA-free PEMFC with reduced platinum content, enhancing performance and market readiness to promote hydrogen power for decarbonizing transport and energy sectors. | EIC Transition | € 2.495.900 | 2023 | Details |
Esplorado, digital electrocatalyst databaseHet project ontwikkelt een webdatabase voor het vergelijken van elektrokatalysatoren om onderzoek te versnellen en praktische toepassingen te stimuleren voor een groenere toekomst. | Mkb-innovati... | € 20.000 | 2021 | Details |
Membrane-assisted Ethylene Synthesis over Nanostructured Tandem Catalysts
MemCat aims to develop tandem catalysts for direct CO2-to-ethylene conversion, enhancing efficiency and sustainability in producing carbon-negative plastic precursors.
Duurzame katalyse door innovatieve Nanocoater
VSPARTICLE onderzoekt de haalbaarheid van een nanocoater voor katalysedeeltjes om efficiëntere, schonere en uniforme katalysatoren te ontwikkelen, waardoor katalyse-onderzoek en industriële toepassingen versneld worden.
Tech and business validation towards market readiness of high-performance PFSA-free intermetallic Pt-alloy membrane electrode assemblies for PEMFCs: Enabling next-gen hydrogen-based transport
ENABLER aims to develop a PFSA-free PEMFC with reduced platinum content, enhancing performance and market readiness to promote hydrogen power for decarbonizing transport and energy sectors.
Esplorado, digital electrocatalyst database
Het project ontwikkelt een webdatabase voor het vergelijken van elektrokatalysatoren om onderzoek te versnellen en praktische toepassingen te stimuleren voor een groenere toekomst.