Evolutionary principles of nuclear dynamics and remodelling
This project aims to uncover the genomic and evolutionary factors influencing nuclear dynamics across eukaryotes, enhancing our understanding of karyodynamic diversity and its evolutionary origins.
Projectdetails
Introduction
Every eukaryote has a nucleus, a double lipid membrane-bound compartment that encapsulates the genome, but almost every nucleus is different - in shape, size, molecular composition, spatial organisation, and dynamics through the cell cycle. Given its fundamental and universal functional roles in protecting the DNA and regulating the exchange of information and control machinery between genome and cytoplasm, one might ask the question: why are there so many ways to build and remodel a nucleus?
Research Objectives
Bringing together comparative genomics, phylogenetics, quantitative cell biology, and experimental evolution in multiple microbial model systems drawn from across the eukaryotic tree, we set out to elucidate the genomic, biophysical, and evolutionary factors that determine nuclear dynamics and remodelling - karyodynamics - within the context of cellular architecture and function.
Methodology
A comparative perspective driven by phylogenetics will enable us to:
- Separate universal principles of karyodynamics from species- and niche-specific adaptations.
- Dissect the reasons for the evolutionary and developmental plasticity that we observe experimentally.
In turn, we can use these principles to infer, predict, and validate phenotypes in novel and emerging model systems.
Significance
Finally, a more comprehensive understanding of the mechanisms responsible for karyodynamic phenotypic diversity would allow us to reconstruct evolutionary trajectories all the way back to the origins of the nuclear compartment, a landmark event in the evolution of eukaryotes from an archaeal-bacterial symbiosis over 2 billion years ago.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.615.930 |
Totale projectbegroting | € 1.615.930 |
Tijdlijn
Startdatum | 1-4-2023 |
Einddatum | 31-3-2028 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- EUROPEAN MOLECULAR BIOLOGY LABORATORYpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Illuminating radial genome organization in the nucleusThis project aims to explore the universal radial GC-gradient in mammalian cell genomes, developing methods to understand its role in nuclear organization and function across species and conditions. | ERC COG | € 1.999.655 | 2024 | Details |
Dependence Of NUcleosome Transactions on SequenceDevelop a novel high-throughput platform to investigate how DNA sequence influences chromatin remodelling dynamics and nucleosome function at the single-molecule level. | ERC ADG | € 2.137.145 | 2023 | Details |
Revealing the structure and mechanism of mitotic chromosome folding inside the cellThis project aims to elucidate the folding principles of mitotic chromosomes in single human cells using advanced imaging techniques to enhance understanding of genome restructuring during cell division. | ERC ADG | € 3.118.430 | 2024 | Details |
Reshaping the nucleome to reveal its gene- and mechano-regulatory functionThe RENOME project aims to develop tools for real-time study and reengineering of chromatin organization to connect nuclear mechanics with cellular behavior and inform future epigenetic therapies. | ERC COG | € 1.998.595 | 2025 | Details |
Illuminating radial genome organization in the nucleus
This project aims to explore the universal radial GC-gradient in mammalian cell genomes, developing methods to understand its role in nuclear organization and function across species and conditions.
Dependence Of NUcleosome Transactions on Sequence
Develop a novel high-throughput platform to investigate how DNA sequence influences chromatin remodelling dynamics and nucleosome function at the single-molecule level.
Revealing the structure and mechanism of mitotic chromosome folding inside the cell
This project aims to elucidate the folding principles of mitotic chromosomes in single human cells using advanced imaging techniques to enhance understanding of genome restructuring during cell division.
Reshaping the nucleome to reveal its gene- and mechano-regulatory function
The RENOME project aims to develop tools for real-time study and reengineering of chromatin organization to connect nuclear mechanics with cellular behavior and inform future epigenetic therapies.