Controlling Cavitation for the Activation of Small Molecules
This project aims to enhance sonochemistry efficiency by developing multifunctional catalytic cavitation agents to optimize cavitation bubble control and reduce energy costs for chemical synthesis.
Projectdetails
Introduction
Sonochemistry is the use of ultrasound to facilitate chemical reactions. Chemical reactions requiring stringent conditions can be effectively carried out using sonochemistry at ambient conditions.
Current Limitations
The current state of sonochemistry is limited by the low efficiencies in converting electrical energy to cavitation energy for free radical generation. This makes the application of ultrasound for chemical synthesis an expensive technique in terms of energy per productivity.
Proposed Solution
Controlling cavitation with novel catalytic cavitation agents (CCA) to reduce energy requirements for inertial cavitation will open a new paradigm for sonochemistry. This approach has the potential to impact the catalytic chemistry, acoustic, and sonochemistry communities, while also opening opportunities to address challenges faced by chemists in sustainable chemicals synthesis.
Project Objectives
The objective of my project is to systematically progress towards a deep understanding of cavitation bubble generation through:
- In-situ observation approaches
- Engineering of multifunctional catalytic cavitation agents
- Machine learning
This will exert better control on the formation, uniformity, and collapse location of cavitation bubbles, thereby significantly reducing the acoustic energy requirement for inertial cavitation.
Methodology
I will synthesize multifunctional transition metal oxides catalytic cavitation agents and investigate and optimize their structure/properties relationships in response to acoustic cavitation.
Unique Integration
This project offers a unique integration of approaches, competencies, and resources in:
- Material science (synthesis of CCAs)
- Physics (modelling)
- Chemistry (activation of small molecules)
Expected Outcomes
The iterative project focus on the most fundamental understanding of the physical mechanisms will allow for substantial progress into the complex phenomenon of sonochemistry and sonocatalysis.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.499.643 |
Totale projectbegroting | € 1.499.643 |
Tijdlijn
Startdatum | 1-1-2024 |
Einddatum | 31-12-2028 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRSpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Single-Atom Catalysts for a New Generation of Chemical Processes: from Fundamental Understanding to Interface EngineeringThis project aims to develop innovative single-atom catalysts for CO2 conversion through advanced synthesis and characterization techniques, enhancing sustainability in chemical manufacturing. | ERC Starting... | € 1.499.681 | 2023 | Details |
Sophisticated Microbubble Coating Materials for Functional Ultrasound SensingThe project aims to develop controlled microfluidic techniques for creating functional mono-acoustic bubbles with predictable ultrasound responses for enhanced medical sensing applications. | ERC Starting... | € 1.962.500 | 2023 | Details |
Controlling Oxygen Selectivity at the Atomic ScaleCOSAS aims to optimize catalytic properties for sustainable energy by studying electrode-electrolyte interfaces using advanced techniques to enhance water oxidation and seawater electrolysis efficiency. | ERC Starting... | € 2.345.000 | 2023 | Details |
Force-Responsive Heterogeneous CatalystsThis project aims to develop tunable graphene-based catalytic materials that enhance reaction performance through externally controlled confinement, bridging the gap between artificial and natural catalysts. | ERC Consolid... | € 1.999.582 | 2025 | Details |
Ball-Milling Mechanochemistry at the Molecular Level-2The project aims to enhance the understanding of mechanochemistry by investigating catalytic reactions at the atomic scale using advanced experimental methods and developing new analytical tools. | ERC Advanced... | € 2.500.000 | 2024 | Details |
Single-Atom Catalysts for a New Generation of Chemical Processes: from Fundamental Understanding to Interface Engineering
This project aims to develop innovative single-atom catalysts for CO2 conversion through advanced synthesis and characterization techniques, enhancing sustainability in chemical manufacturing.
Sophisticated Microbubble Coating Materials for Functional Ultrasound Sensing
The project aims to develop controlled microfluidic techniques for creating functional mono-acoustic bubbles with predictable ultrasound responses for enhanced medical sensing applications.
Controlling Oxygen Selectivity at the Atomic Scale
COSAS aims to optimize catalytic properties for sustainable energy by studying electrode-electrolyte interfaces using advanced techniques to enhance water oxidation and seawater electrolysis efficiency.
Force-Responsive Heterogeneous Catalysts
This project aims to develop tunable graphene-based catalytic materials that enhance reaction performance through externally controlled confinement, bridging the gap between artificial and natural catalysts.
Ball-Milling Mechanochemistry at the Molecular Level-2
The project aims to enhance the understanding of mechanochemistry by investigating catalytic reactions at the atomic scale using advanced experimental methods and developing new analytical tools.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Duurzame katalyse door innovatieve NanocoaterVSPARTICLE onderzoekt de haalbaarheid van een nanocoater voor katalysedeeltjes om efficiëntere, schonere en uniforme katalysatoren te ontwikkelen, waardoor katalyse-onderzoek en industriële toepassingen versneld worden. | Mkb-innovati... | € 20.000 | 2020 | Details |
Wastewater technology for combining ozone with hydrodynamic cavitationHet project onderzoekt de haalbaarheid van het combineren van ozonoxidatie met hydrodynamic cavitatie voor effectieve en duurzame zuivering van industrieel afvalwater. | Mkb-innovati... | € 20.000 | 2020 | Details |
Duurzame katalyse door innovatieve Nanocoater
VSPARTICLE onderzoekt de haalbaarheid van een nanocoater voor katalysedeeltjes om efficiëntere, schonere en uniforme katalysatoren te ontwikkelen, waardoor katalyse-onderzoek en industriële toepassingen versneld worden.
Wastewater technology for combining ozone with hydrodynamic cavitation
Het project onderzoekt de haalbaarheid van het combineren van ozonoxidatie met hydrodynamic cavitatie voor effectieve en duurzame zuivering van industrieel afvalwater.