Controlling Cavitation for the Activation of Small Molecules

This project aims to enhance sonochemistry efficiency by developing multifunctional catalytic cavitation agents to optimize cavitation bubble control and reduce energy costs for chemical synthesis.

Subsidie
€ 1.499.643
2024

Projectdetails

Introduction

Sonochemistry is the use of ultrasound to facilitate chemical reactions. Chemical reactions requiring stringent conditions can be effectively carried out using sonochemistry at ambient conditions.

Current Limitations

The current state of sonochemistry is limited by the low efficiencies in converting electrical energy to cavitation energy for free radical generation. This makes the application of ultrasound for chemical synthesis an expensive technique in terms of energy per productivity.

Proposed Solution

Controlling cavitation with novel catalytic cavitation agents (CCA) to reduce energy requirements for inertial cavitation will open a new paradigm for sonochemistry. This approach has the potential to impact the catalytic chemistry, acoustic, and sonochemistry communities, while also opening opportunities to address challenges faced by chemists in sustainable chemicals synthesis.

Project Objectives

The objective of my project is to systematically progress towards a deep understanding of cavitation bubble generation through:

  1. In-situ observation approaches
  2. Engineering of multifunctional catalytic cavitation agents
  3. Machine learning

This will exert better control on the formation, uniformity, and collapse location of cavitation bubbles, thereby significantly reducing the acoustic energy requirement for inertial cavitation.

Methodology

I will synthesize multifunctional transition metal oxides catalytic cavitation agents and investigate and optimize their structure/properties relationships in response to acoustic cavitation.

Unique Integration

This project offers a unique integration of approaches, competencies, and resources in:

  • Material science (synthesis of CCAs)
  • Physics (modelling)
  • Chemistry (activation of small molecules)

Expected Outcomes

The iterative project focus on the most fundamental understanding of the physical mechanisms will allow for substantial progress into the complex phenomenon of sonochemistry and sonocatalysis.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 1.499.643
Totale projectbegroting€ 1.499.643

Tijdlijn

Startdatum1-1-2024
Einddatum31-12-2028
Subsidiejaar2024

Partners & Locaties

Projectpartners

  • CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRSpenvoerder

Land(en)

France

Vergelijkbare projecten binnen European Research Council

ERC Starting...

Single-Atom Catalysts for a New Generation of Chemical Processes: from Fundamental Understanding to Interface Engineering

This project aims to develop innovative single-atom catalysts for CO2 conversion through advanced synthesis and characterization techniques, enhancing sustainability in chemical manufacturing.

€ 1.499.681
ERC Starting...

Sophisticated Microbubble Coating Materials for Functional Ultrasound Sensing

The project aims to develop controlled microfluidic techniques for creating functional mono-acoustic bubbles with predictable ultrasound responses for enhanced medical sensing applications.

€ 1.962.500
ERC Starting...

Controlling Oxygen Selectivity at the Atomic Scale

COSAS aims to optimize catalytic properties for sustainable energy by studying electrode-electrolyte interfaces using advanced techniques to enhance water oxidation and seawater electrolysis efficiency.

€ 2.345.000
ERC Consolid...

Force-Responsive Heterogeneous Catalysts

This project aims to develop tunable graphene-based catalytic materials that enhance reaction performance through externally controlled confinement, bridging the gap between artificial and natural catalysts.

€ 1.999.582
ERC Advanced...

Ball-Milling Mechanochemistry at the Molecular Level-2

The project aims to enhance the understanding of mechanochemistry by investigating catalytic reactions at the atomic scale using advanced experimental methods and developing new analytical tools.

€ 2.500.000

Vergelijkbare projecten uit andere regelingen

Mkb-innovati...

Duurzame katalyse door innovatieve Nanocoater

VSPARTICLE onderzoekt de haalbaarheid van een nanocoater voor katalysedeeltjes om efficiëntere, schonere en uniforme katalysatoren te ontwikkelen, waardoor katalyse-onderzoek en industriële toepassingen versneld worden.

€ 20.000
Mkb-innovati...

Wastewater technology for combining ozone with hydrodynamic cavitation

Het project onderzoekt de haalbaarheid van het combineren van ozonoxidatie met hydrodynamic cavitatie voor effectieve en duurzame zuivering van industrieel afvalwater.

€ 20.000