Bioinspired Transmembrane Nanomachines
MembraneMachines aims to design and build innovative transmembrane nanomachines using DNA technology to harness electrochemical gradients for molecular synthesis and active transport.
Projectdetails
Introduction
A hallmark of life is its ability to utilise local free energy to do work at molecular scales. Such work is done by millions of sophisticated protein complexes that act as nanomachines. Prominent among these are the transmembrane motor proteins. They lie at the centre of life-critical molecular processes such as ATP synthase and bacterial propulsion.
Background
Despite the great attention creating artificial molecular machines has received across scientific disciplines, constructing artificial transmembrane nanomachines remains largely unexplored. Such transmembrane artificial nanomachines would give us direct access to one of life’s most universal energy sources, transmembrane electrochemical potentials, and enable us to design novel molecular machines for molecular catalysis, transportation, and cargo propulsion.
Project Goals
In MembraneMachines, I aim to realise a breakthrough by designing and building a series of multi-component transmembrane nanomachines that are embedded in lipid bilayers. Using DNA technology, nanopores, and nanofabrication, my team and I will design, build, and test:
- An electrochemical-gradient powered transmembrane nanoturbine in biocompatible lipid bilayers to generate controlled conformational changes and power synthesis of life-critical molecules such as ATP.
- An analyte-agnostic artificial nano stepper that can universally thread polymers through nanopores using self-assembled monolayers and DNA technology.
- An artificial bacterial flagella motor that converts transmembrane ion gradient into translational propulsion, enabling a new direction in constructing and driving active nanovehicles.
Conclusion
Harnessing cutting-edge advancements in biophysics and biochemistry, “MembraneMachines” promises not just strides in the fields of nanomotors and nanoengineering but also introduces fresh perspectives on nanoscale synthesis, molecular manipulation, and dynamic nano-vehicle cargo transport.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.812.400 |
Totale projectbegroting | € 1.812.400 |
Tijdlijn
Startdatum | 1-11-2024 |
Einddatum | 31-10-2029 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- KATHOLIEKE UNIVERSITEIT LEUVENpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Electrically driven DNA-origami-based machinesThis project aims to develop advanced artificial molecular machines using DNA origami and electromechanical actuation for precise control and functionality, potentially revolutionizing nanoscale engineering. | ERC Consolid... | € 1.999.318 | 2022 | Details |
Time-resolved imaging of membrane transporter dynamics under physiological ionic gradientsThe project aims to develop a microfluidic platform for high-resolution, time-resolved structural studies of membrane proteins under physiological conditions to enhance drug targeting and understanding of cellular functions. | ERC Synergy ... | € 11.178.784 | 2024 | Details |
DNA-encoded REconfigurable and Active MatterThe project aims to develop DNA-encoded dynamic principles to create adaptive synthetic materials with life-like characteristics and multifunctional capabilities through innovative self-assembly and genetic programming. | ERC Advanced... | € 2.496.750 | 2023 | Details |
The geometrical and physical basis of cell-like functionalityThe project aims to uncover mechanistic principles for building life-like systems from minimal components using theoretical modeling and in-silico evolution to explore protein patterns and membrane dynamics. | ERC Advanced... | € 2.498.813 | 2024 | Details |
Massive parallel de novo design of sensing nanoporesPoreMADNeSS aims to innovate transmembrane β-barrel design for nanopore sensors using computational methods and machine learning to enhance sensing capabilities for new analytes. | ERC Starting... | € 1.499.250 | 2024 | Details |
Electrically driven DNA-origami-based machines
This project aims to develop advanced artificial molecular machines using DNA origami and electromechanical actuation for precise control and functionality, potentially revolutionizing nanoscale engineering.
Time-resolved imaging of membrane transporter dynamics under physiological ionic gradients
The project aims to develop a microfluidic platform for high-resolution, time-resolved structural studies of membrane proteins under physiological conditions to enhance drug targeting and understanding of cellular functions.
DNA-encoded REconfigurable and Active Matter
The project aims to develop DNA-encoded dynamic principles to create adaptive synthetic materials with life-like characteristics and multifunctional capabilities through innovative self-assembly and genetic programming.
The geometrical and physical basis of cell-like functionality
The project aims to uncover mechanistic principles for building life-like systems from minimal components using theoretical modeling and in-silico evolution to explore protein patterns and membrane dynamics.
Massive parallel de novo design of sensing nanopores
PoreMADNeSS aims to innovate transmembrane β-barrel design for nanopore sensors using computational methods and machine learning to enhance sensing capabilities for new analytes.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Computation driven development of novel vivo-like-DNA-nanotransducers for biomolecules structure identificationThis project aims to develop DNA-nanotransducers for real-time detection and analysis of conformational changes in biomolecules, enhancing understanding of molecular dynamics and aiding drug discovery. | EIC Pathfinder | € 3.000.418 | 2022 | Details |
BIOmimetic selective extraction MEMbranesBIOMEM aims to create energy-efficient biomimetic membranes using biological transport proteins for selective extraction of valuable compounds and pollutants from water. | EIC Pathfinder | € 2.119.133 | 2024 | Details |
Computation driven development of novel vivo-like-DNA-nanotransducers for biomolecules structure identification
This project aims to develop DNA-nanotransducers for real-time detection and analysis of conformational changes in biomolecules, enhancing understanding of molecular dynamics and aiding drug discovery.
BIOmimetic selective extraction MEMbranes
BIOMEM aims to create energy-efficient biomimetic membranes using biological transport proteins for selective extraction of valuable compounds and pollutants from water.