Large-Scale Electrosynthesis of Borylated Azines
B-ELECTRO aims to develop scalable methods for synthesizing borylated azines for use in Suzuki-Miyaura cross-coupling, enhancing pharmaceutical and agrochemical innovation.
Projectdetails
Introduction
The Nobel prize-winning Suzuki-Miyaura cross-coupling involves the palladium-catalysed coupling of a borylated molecule with an aryl halide and is the 2nd most used process by the pharmaceutical sector.
Importance of Azines
Azines are small molecules integral to discovering and manufacturing pharmaceuticals and agrochemicals. Using azines in Suzuki-Miyaura cross-coupling reactions represents the ideal solution to introduce these important motifs in discovery molecules.
Challenges in Borylating Azines
However, there are significant challenges:
- There is currently a very limited way of borylating azines.
- Borylated azines, especially those containing a boron vicinal to the N-atom, are highly unstable.
Need for New Methods
We urgently need chemical methods that deliver borylated azines in a fast and cost-effective manner, which can then be employed in Suzuki-Miyaura cross-coupling reactions.
Recent Developments
As part of our ERC-2018-StG NEBULAR, focused on the development of novel photochemical strategies in radical chemistry, we recently identified a strategy that generates boryl radicals. This approach provides far greater capability over any other method to both prepare and utilize borylated azines in modular fragment synthesis.
Goals of B-ELECTRO
B-ELECTRO aims to make the synthesis of our borylated azines workable on a large scale, thus making it attractive to the pharmaceutical and agro industries.
Commercialization and Impact
This program provides a unique opportunity for the commercialization of our borylated materials and their utilization by end-users. It aims to provide innovative chemistry solutions and long-lasting impact on the pharmaceutical and agrochemical industry, and eventually, our society.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 150.000 |
Totale projectbegroting | € 150.000 |
Tijdlijn
Startdatum | 1-1-2024 |
Einddatum | 30-6-2025 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- RHEINISCH-WESTFAELISCHE TECHNISCHE HOCHSCHULE AACHENpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Reprogramming the reactivity of main-group compounds for capturing and activating methane and dinitrogenThe B-yond project aims to develop innovative main-group catalysts for unprecedented chemical transformations, advancing C-H bond functionalization and dinitrogen activation without transition metals. | ERC COG | € 1.957.875 | 2022 | Details |
Transforming Boron Chemistry By Exploring Boryl Radical ReactivityThis project aims to innovate organic chemistry by developing novel catalysis using boryl radicals for efficient C–B bond formation and new synthetic methods for complex molecules. | ERC COG | € 1.999.250 | 2024 | Details |
Enzymatic chemistry acting on alkyl chainsThe project aims to discover and characterize novel biocatalysts from cyanobacteria to enable selective functionalization of alkyl chains for sustainable production of organic chemicals. | ERC COG | € 1.995.621 | 2024 | Details |
Electrochemical Borylation via Borylene Species: Bridging a Gap in Synthetic ChemistryThis project aims to utilize electrochemistry for the controlled generation of borylenes, enabling novel borylation techniques and unlocking access to previously inaccessible molecular structures. | ERC STG | € 1.499.643 | 2024 | Details |
Reprogramming the reactivity of main-group compounds for capturing and activating methane and dinitrogen
The B-yond project aims to develop innovative main-group catalysts for unprecedented chemical transformations, advancing C-H bond functionalization and dinitrogen activation without transition metals.
Transforming Boron Chemistry By Exploring Boryl Radical Reactivity
This project aims to innovate organic chemistry by developing novel catalysis using boryl radicals for efficient C–B bond formation and new synthetic methods for complex molecules.
Enzymatic chemistry acting on alkyl chains
The project aims to discover and characterize novel biocatalysts from cyanobacteria to enable selective functionalization of alkyl chains for sustainable production of organic chemicals.
Electrochemical Borylation via Borylene Species: Bridging a Gap in Synthetic Chemistry
This project aims to utilize electrochemistry for the controlled generation of borylenes, enabling novel borylation techniques and unlocking access to previously inaccessible molecular structures.