Spontaneous interfacial oxidant formation as a key driver for aerosol oxidation
The SOFA project aims to investigate the atmospheric significance of spontaneous oxidant formation at the air/water interface, enhancing understanding of multiphase oxidation in tropospheric chemistry.
Projectdetails
Introduction
Aerosols and clouds are key players in tropospheric chemistry. These tiny particles suspended in the air, with a radius ranging from a few nanometres to tens of micrometres, impact atmospheric composition, represent one of the largest uncertainties in climatic projections, and cause millions of deaths worldwide every year. Hence, they have enormous societal and economic consequences.
Nonetheless, there is still a knowledge gap preventing us from describing the chemical evolution of aerosols and clouds during their atmospheric lifetime. Supported by preliminary experiments, I therefore propose to unravel the impact of the spontaneous oxidant formation at the air/liquid interface as a key driver for multiphase oxidation processes.
Background
Water molecules in bulk liquid are stable and inert under ambient conditions. In sharp contrast, it was very recently shown that the local orientation of water molecules at an air/water interface induces an electric field that generates spontaneous radicals in micron-sized droplets. This production does not involve any catalysts such as light or heat. It is an intrinsic property of the air/water interface and therefore potentially ubiquitous in the troposphere.
Project Aim
This spontaneous interfacial oxidant formation has never been explored for its atmospheric significance. Therefore, the SOFA project aims to unravel the atmospheric importance of this interfacial (dark) chemistry.
If oxidants (including OH radicals) are in fact spontaneously produced at the air-water interface, under atmospherically relevant concentrations, this would profoundly challenge our understanding and description of atmospheric multiphase chemistry.
Methodology
SOFA will develop a novel strategy, scaling up from laboratory-based measurements to fieldwork and modelling to assess the importance of this interfacial chemistry.
Impact
SOFA will advance an entirely new perspective on how to address the multiphase oxidation capacity of the troposphere, and will therefore have a wide impact.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.726.588 |
Totale projectbegroting | € 2.726.588 |
Tijdlijn
Startdatum | 1-10-2022 |
Einddatum | 30-9-2027 |
Subsidiejaar | 2022 |
Partners & Locaties
Projectpartners
- CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRSpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Controlling Oxygen Selectivity at the Atomic ScaleCOSAS aims to optimize catalytic properties for sustainable energy by studying electrode-electrolyte interfaces using advanced techniques to enhance water oxidation and seawater electrolysis efficiency. | ERC Starting... | € 2.345.000 | 2023 | Details |
Household Chemicals Amplifying Urban Aerosol PollutionCHANEL aims to identify key volatile chemical products from household chemicals as major contributors to urban secondary organic aerosol pollution using advanced measurement techniques and modeling. | ERC Starting... | € 1.499.359 | 2023 | Details |
Stratospheric cOmposition in a changing CLIMate: drivers and mechanismsThe SOCLIM project aims to enhance weather and climate predictions by analyzing stratospheric ozone and water vapor's role in atmospheric circulation and climate change impacts. | ERC Starting... | € 1.560.089 | 2024 | Details |
Formation, Clustering, and Atmospheric Impact of Clusterable Organic CompoundsThis project aims to elucidate the formation mechanisms and atmospheric impact of clusterable organic compounds (COCs) on aerosol particles using advanced computational and experimental techniques. | ERC Starting... | € 1.496.886 | 2025 | Details |
Exploring the Molecular Properties of Atmospheric Freshly Nucleated ParticlesThis project aims to investigate the properties and behavior of freshly nucleated aerosol particles using advanced computational methods to reduce uncertainty in climate models. | ERC Starting... | € 1.462.491 | 2022 | Details |
Controlling Oxygen Selectivity at the Atomic Scale
COSAS aims to optimize catalytic properties for sustainable energy by studying electrode-electrolyte interfaces using advanced techniques to enhance water oxidation and seawater electrolysis efficiency.
Household Chemicals Amplifying Urban Aerosol Pollution
CHANEL aims to identify key volatile chemical products from household chemicals as major contributors to urban secondary organic aerosol pollution using advanced measurement techniques and modeling.
Stratospheric cOmposition in a changing CLIMate: drivers and mechanisms
The SOCLIM project aims to enhance weather and climate predictions by analyzing stratospheric ozone and water vapor's role in atmospheric circulation and climate change impacts.
Formation, Clustering, and Atmospheric Impact of Clusterable Organic Compounds
This project aims to elucidate the formation mechanisms and atmospheric impact of clusterable organic compounds (COCs) on aerosol particles using advanced computational and experimental techniques.
Exploring the Molecular Properties of Atmospheric Freshly Nucleated Particles
This project aims to investigate the properties and behavior of freshly nucleated aerosol particles using advanced computational methods to reduce uncertainty in climate models.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
electrochemical CO2 conversion to formate and productsHet project versnelt de ontwikkeling van elektrochemische CO2-conversietechnologieën naar formiazuur met hernieuwbare energie, gericht op kostenreductie en efficiëntieverbetering voor een duurzame chemische industrie. | Missiegedrev... | € 3.971.714 | 2025 | Details |
Gas-oppervlakte interactiesimulatie in industriële optica, waterstof en adsorptie van giftige gassenDit project onderzoekt de technische en economische haalbaarheid van gasafvang met poreuze materialen voor CO2 en andere gassen via simulaties en modellering, gericht op industriële toepassingen. | Mkb-innovati... | € 20.000 | 2023 | Details |
electrochemical CO2 conversion to formate and products
Het project versnelt de ontwikkeling van elektrochemische CO2-conversietechnologieën naar formiazuur met hernieuwbare energie, gericht op kostenreductie en efficiëntieverbetering voor een duurzame chemische industrie.
Gas-oppervlakte interactiesimulatie in industriële optica, waterstof en adsorptie van giftige gassen
Dit project onderzoekt de technische en economische haalbaarheid van gasafvang met poreuze materialen voor CO2 en andere gassen via simulaties en modellering, gericht op industriële toepassingen.