Continuous Digitalized Processes for Producing Biopharmaceuticals
Developing a Digital Twin-based methodology for continuous, integrated biopharmaceutical production to enhance efficiency and support advanced therapies like mRNA vaccines and personalized medicine.
Projectdetails
Introduction
Biopharmaceuticals are essential for the medical treatment of diseases like immune deficiencies, cancer, and diabetes, and provide an indispensable component to the health care system worldwide, as showcased by mRNA vaccines in the recent pandemic. Despite this success, manufacturing is still based on traditional, outdated batch production technologies, and on process development procedures based on historical experience and empiricism leading to many inefficiencies, like very long values of time-to-market.
Need for Modernization
There is an urgent need to introduce modern integrated, continuous, and fully digitalized production processes, to also cope with the upcoming cell and gene therapies and the emerging personalized medicine. I develop here revolutionary process development and operation methodologies to enable this.
Digital Twin Approach
These methodologies are based on a Digital Twin, which includes the first continuous, integrated and fully digitalized plant for producing mRNA. The “engine” are innovative hybrid models for each unit of the plant, which are updated in real time through continuous learning techniques.
Predictive Capabilities
These models provide the predictive capabilities needed for:
- Monitoring and control
- Knowledge transfer
- Scenario analysis
- Experimental planning
Development of New Methodologies
I will develop a new generation of hybrid models and innovative machine learning algorithms and provide the experimental evaluation and validation of my methodologies. Other high precision continuous processes, like flow-chemistry for sustainable catalytic processes or microfluidics for the controlled synthesis of nanomaterials, will benefit from these results.
Expertise and Inspiration
I am a recognised pioneer in the scientific foundations of continuous operation in biopharma. This inspired me in developing this disruptive Digital-Twin-based methodology and cope with the associated high risk.
Mentorship and Impact
With about 110 PhD students advised in my career and now active in Academia and Industry, I know how to inspire a new generation of scientists with the novel science emerging from this project.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.500.000 |
Totale projectbegroting | € 2.500.000 |
Tijdlijn
Startdatum | 1-10-2023 |
Einddatum | 30-9-2028 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- ARISTOTELIO PANEPISTIMIO THESSALONIKISpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Yeast cell factory for mRNA bioproductionYscript aims to revolutionize mRNA production by using yeast for efficient, cost-effective bioproduction and purification, enhancing therapeutic quality and accessibility in healthcare. | EIC Pathfinder | € 3.078.249 | 2022 | Details |
Smart manufacturing for autologous cell therapies enabled by innovative biomonitoring technologies and advanced process controlThe SMARTER project aims to develop a smart bioprocessing platform for personalized autologous cell therapies, enhancing manufacturing efficiency and enabling clinical use for solid tumors. | EIC Pathfinder | € 1.364.281 | 2022 | Details |
Automated online monitoring & control to improve processes and decision making in cell and gene therapy manufacturingThe project aims to develop an automated, self-contained bioreactor with continuous monitoring of critical process parameters to enhance scalability and quality in cell and gene therapy manufacturing. | EIC Pathfinder | € 3.617.783 | 2022 | Details |
Biopharmaceuticals purification by continuous membrane-assisted crystallization achieving lower cost and intensified processesThe BIOPURE project aims to revolutionize monoclonal antibody purification using innovative membrane technology to enhance efficiency, reduce costs, and improve access to biomedicines. | EIC Transition | € 2.069.150 | 2023 | Details |
Yeast cell factory for mRNA bioproduction
Yscript aims to revolutionize mRNA production by using yeast for efficient, cost-effective bioproduction and purification, enhancing therapeutic quality and accessibility in healthcare.
Smart manufacturing for autologous cell therapies enabled by innovative biomonitoring technologies and advanced process control
The SMARTER project aims to develop a smart bioprocessing platform for personalized autologous cell therapies, enhancing manufacturing efficiency and enabling clinical use for solid tumors.
Automated online monitoring & control to improve processes and decision making in cell and gene therapy manufacturing
The project aims to develop an automated, self-contained bioreactor with continuous monitoring of critical process parameters to enhance scalability and quality in cell and gene therapy manufacturing.
Biopharmaceuticals purification by continuous membrane-assisted crystallization achieving lower cost and intensified processes
The BIOPURE project aims to revolutionize monoclonal antibody purification using innovative membrane technology to enhance efficiency, reduce costs, and improve access to biomedicines.